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Equality saturation has gained significant interest as a powerful optimization and reasoning technique. At its
heart is the e-graph data structure, that space-efficiently represents equal sub-terms uniquely. An important
open problem in this context is extending this efficient representation to languages featuring (bound) variables.
Independent of how we represent variables in e-graphs, either as names or nameless (using de Bruijn indices),
sharing is broken as sub-terms that differ only in the names of their variables are represented separately. This
results in aggressive e-graph growth, bad performance, as well as reduced expressiveness.

In this paper, we present a novel approach to representing bound variables in e-graphs by making them
a first-class built-in feature of the data structure. Our slotted e-graph represents terms that differ only by
(bound or free) variable names uniquely. To do so, e-classes that represent equivalent terms via e-nodes are
parameterized by slots, abstracting over free variables of the represented terms. Referring to an e-class from
an e-node now requires relating the variables from its context to the slots of the e-class.

Our evaluation of slotted e-graph uses two case studies from compiler optimization and theorem proving
to show that performing equality saturation for languages with bound variables is greatly simplified and that
we can solve practically relevant problems that cannot be solved with e-graphs using de Bruijn indices.
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1 Introduction
Equality Saturation [Tate et al. 2009] is a technique that enables exploring many different ways
to rewrite terms efficiently, thanks to the clever e-graph (equivalence graph) data-structure that
represents many equivalent terms compactly [Nelson and Oppen 1980]. The strength of equality
saturation is that it relieves users from having to decide in which order rewrite rules should be
applied, which is often difficult.
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The egg library by Willsey et al. [2021] has sparked a renewed interest in equality saturation as
an optimization and reasoning technique. There is a growing community expanding the foundation
of the technique and exploring practical applications in various domains, ranging from optimizing
software [Kœhler et al. 2024; Shaikhha et al. 2024; Smith et al. 2021] and hardware [Cheng et al.
2024; Wang et al. 2023], to reasoning about correctness in theorem proving [Kœhler et al. 2024;
Rossel 2024] and verification [Dickerson et al. 2024].
To use equality saturation, the initial terms, written in the language of the application domain,

have to be represented in the e-graph. One central challenge is how to represent variables. With
variables, we mean names that have different meanings in different terms depending on their context. In
contrast, we call names that always have the same meaning independent of their context constants,
such as PI when used to always name the circle constant 𝜋 . Variables are present in almost all
languages of interest, and are often introduced by syntactic constructs that bind a name in a
particular scope, such as a lambda-binding: 𝜆𝑥 . 𝑡 where the variable 𝑥 is bound in the term 𝑡 . Let us
see how different projects approach the representation of variables in e-graphs.
The Glenside project by Smith et al. [2021] avoids the issue of variables altogether with a

combinator-only language design without variables, as “name bindings significantly complicate term
rewriting” and the authors state that they “have found the additional complexity and rewrite search
space blow up substantially eliminate the potential advantages of term rewriting in such IR designs”.
Of course, a combinator-only language without variables has downsides in itself. Besides being
unfamiliar to users who are used to variables, it is often impractical to translate terms with variables
into combinator-only style, as in the worst case it results in a term size of O(𝑛3) [Lachowski 2018].

In the egg paper, an encoding of lambda calculus is presented that represents variables with their
names encoded as plain strings [Willsey et al. 2021]. This representation is presented as “contrived”
and name bindings are described as “a perennially tough problem for e-graphs”. The name-based
representation has a couple of obvious downsides, as two equal terms that only differ by their bound
variable names are stored twice and not treated as equal. Furthermore, problems arise when variable
names collide during rewriting, e.g., when performing capture-avoiding substitution, making it
necessary to rename variables and duplicate large parts of the e-graph. Detecting these collisions
during rewriting is not trivial, requiring delicate rules and tracking which variables are free in a
context via a dedicated analysis. Besides these complexity challenges, due to the frequent renaming
the e-graph can rapidly grow, quickly running out of memory as shown by Kœhler et al. [2024].
In their paper, Kœhler et al. [2024] use de Bruijn indices [De Bruijn 1972] to represent bound

variables in e-graphs. De Bruijn indices encode variables as numbers counting the numbers of
binders in scope between the occurrence of the variable and its corresponding binder. This encoding
of variables solves the problems that occur when representing variables by their names, but
unfortunately, introduces new problems. When rewrites eliminate or introduce binders, all indices
have to be shifted, using a dedicated set of rewrites, to maintain correctness. Getting shifting right
is a tedious task and similar to renaming, shifting results in unnecessary duplication that can blow
up the e-graph size quickly, as we will discuss in more depth in Section 4.
Representing bound variables in e-graphs without these complexities and scaling problems is

considered an important research question, and the egg paper acknowledges, that “better support
for languages with binding is important future work” [Willsey et al. 2021].
In this paper, we address this outstanding open research question by making bound variables

a first-class built-in feature of the e-graph data-structure. We introduce slotted e-graphs, which
represent terms that differ only by (bound or free) variable names uniquely. To do so, e-classes,
which group equivalent terms, are parameterized by slots abstracting over all free variables of the
equivalent terms represented by its e-nodes. Referring to an e-class from an e-node now requires
relating the variables from the e-node’s context to the slots of the e-class.
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Fig. 1. The term (𝑎 + 𝑏) + (𝑐 + 𝑑) over variables 𝑎, 𝑏, 𝑐 , and 𝑑 , is represented in a conventional e-graph in (a)
and the slotted e-graph in (c). (b) and (d) show the e-graphs after the equivalent term 𝑎 + (𝑏 + (𝑐 +𝑑)) has been
added. The subterm 𝑐 + 𝑑 is shared and stored only once in both conventional e-graphs, but 𝑎 + 𝑏 is stored
separately. In the slotted e-graph all subterms of the form 𝑥 + 𝑦 (where 𝑥 and 𝑦 are variables) are stored only
once, as slotted e-graphs guarantee that terms which differ only by variable names are represented in the
same unique e-class.

We formalize slotted e-graphs and the extended congruence modulo renaming relation it main-
tains. For clarity, we will focus throughout the paper on examples using lambda calculus as a
familiar language foundation, but slotted e-graphs are capable of representing languages with
arbitrary binders, not just lambda calculus.

We have implemented slotted e-graphs in an open-source library called slotted1 that provides
convenient support for performing equality saturation in languages with variables, as variables are
directly represented as slots and don’t need to be specially encoded, e.g., using de Bruijn indices,
eliminating the need for extra rules for shifting. Writing rewrite rules is greatly simplified, as rules
can be directly expressed using familiar notation without having to worry about name collisions,
no e-class analysis is required for keeping track of bound and free variables, and built-in syntax is
provided for performing substitutions.

To summarize, our contributions are:
• We introduce slotted e-graphs, that add first-class support for variables to e-graphs (Section 2);

• we formalize slotted e-graphs and the extended congruence modulo renaming relation it
maintains (Section 3);

• we evaluate our implementation of slotted e-graphs, called slotted, by systematically com-
paring its capabilities to conventional e-graphs, and then by discussing two practical case
studies from theorem proving and compilation (Section 4).

2 Slotted E-Graphs, Informally
An e-graph (equivalence graph) is a data structure that compactly represents equivalence classes of
terms in a given language. This is achieved by storing equivalent subterms only once, combined
with a congruence relation that establishes a notion of equivalence (beyond pure syntactic equality).

Figure 1a shows an e-graph representing the term (𝑎 + 𝑏) + (𝑐 + 𝑑), with 𝑎, 𝑏, 𝑐 , and 𝑑 denoting
variables. When we add the equivalent term 𝑎 + (𝑏 + (𝑐 + 𝑑)) to the e-graph in Figure 1b, we now
represent two syntactically different, but equivalent terms. This is represented by placing the two
terms into the same e-class (equivalence class), the dotted box at the top. An e-class contains a
1See here: https://crates.io/crates/slotted-egraphs
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Fig. 2. The identity lambda in a
conventional, and slotted e-graph
where the slot 𝑥 is internal to the 𝜆.
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Fig. 3. The term 𝑦 · 0 in a slotted e-graph, before and after unifying
𝑦 · 0 = 0. Slot 𝑦 becomes redundant and does not appear in the (empty)
parameter list of the merged e-class.

set of equivalent e-nodes, each representing one equivalent term (or set of terms, more generally).
The children of e-nodes are e-classes, reflecting the notion that we can pick any e-node within an
e-class, as they all represent equivalent terms.

The e-graph in Figure 1b represents the two equivalent terms (𝑎 +𝑏) + (𝑐 +𝑑) and 𝑎 + (𝑏 + (𝑐 +𝑑)).
We can easily observe the compact, space-efficient sharing for the subterm 𝑐 + 𝑑 , which is indeed
only stored once. However, if we look closely at Figure 1b, we can see that 𝑎 +𝑏 and 𝑐 +𝑑 are stored
separately. We argue that this representation is missing out on further sharing opportunities, as
these terms are exactly the same modulo variable names.

The key insight and idea that motivates our modified slotted e-graph data structure is the intuition
that names of variables should not matter: (𝑎 + 𝑏) + (𝑐 + 𝑑) and (𝑤 + 𝑥) + (𝑦 + 𝑧) are exactly the
same terms if we just rename the variables.
Figure 1c shows the term (𝑎 + 𝑏) + (𝑐 + 𝑑) in our slotted e-graph, with Figure 1d again adding

the equivalent term 𝑎 + (𝑏 + (𝑐 + 𝑑)). In a slotted e-graph, e-classes are parameterized by the free
variables of the terms they represent. Each free variable corresponds to a parameter, we call slot,
of that e-class. The terms 𝑎 + 𝑏 and 𝑐 + 𝑑 are now represented by a single parameterized e-class.
In fact, the central property of a slotted e-graph is that if two terms differ only in the names of
(bound or free) variables, the slotted e-graph is guaranteed to represent them using the same e-node.
E-nodes in slotted e-graphs must now explain how the slots of their surrounding e-class relate to
the parameters of the referenced e-classes. We visualize the slots of e-classes like parameters of a
function, and when referring to an e-class from an e-node we use a notation similar to a function
invocation, instantiating these parameters.

2.1 Bindings
So far, we only discussed free variables, without mentioning how to bind them. The most typical
example for a binder is the 𝜆-abstraction. We use it to exemplify how binders work in a slotted
e-graph. In a conventional e-graph, the mapping between the variable and its binder happens
per name or de Bruijn index, depending on the encoding, as shown in Figure 2 on the left. In a
slotted e-graph, the binding connection is expressed using slots, as shown on the right of Figure 2.
A binder e-node 𝜆 𝑥 introduces a new slot 𝑥 , that is then used to instantiate other e-classes. The
key difference is that the name of the slot is internal and cannot be referenced by other e-nodes –
the surrounding e-class does not expose the slot and has the empty parameter list (). Thus, the
slotted e-graph represents all identity lambdas, whereas using the named representation in the
conventional e-graph does not consider 𝜆𝑥. 𝑥 and 𝜆𝑦. 𝑦 as equal. The de Bruijn encoding in a
conventional e-graph also represents all identity lambdas as 𝜆. 0̂. However, as Maziarz et al. [2021]
pointed out, this is not true in general as de Bruijn indices do not guarantee that 𝛼-equivalent
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subterms are represented equally. For example, the term 𝜆𝑡 . foo (𝜆𝑥 . 𝑥 + 𝑡) (𝜆𝑦. 𝜆𝑥 . 𝑥 + 𝑡) clearly
contains the expression 𝜆𝑥. 𝑥 + 𝑡 twice, but in the de Bruijn encoding they are encoded differently:
𝜆. foo (𝜆. 0̂ + 1̂) (𝜆. 𝜆. 0̂ + 2̂).

2.2 E-Classes Representing Terms with Different Numbers of Free Variables
An interesting question arises for slotted e-graphs from the fact that equal terms might have
different sets of free variables. This is critical, as our e-classes are intended to abstract over these
equivalent terms, exposing their free variables as slots. Figure 3 shows on the left a slotted e-graph
for the term 𝑦 · 0. When we expose the fact that 𝑦 · 0 is equal to 0 to the slotted e-graph, we must
merge the two e-classes representing these subterms. However, which set of free variables should
the new e-class expose?

Our answer is that this e-class should not expose any free variables because the variable 𝑦 does
not contribute to the result of the expression. Generally, if two terms are equal, while one of them
does not depend on some variable, then clearly the other term also does not actually depend on
this concrete variable. We justify our choice because, if ∀𝑥,𝑦. 𝑓 (𝑥,𝑦) = 𝑔(𝑥), then we know that
𝑓 cannot depend on 𝑦, as 𝑓 (𝑥,𝑦) = 𝑔(𝑥) = 𝑓 (𝑥, 𝑧) for any other variable 𝑧. Hence, we expose the
intersection of the free variables of its terms as the set of free variables of the e-class.

Figure 3 shows on the right the slotted e-graph resulting from merging 𝑦 · 0 with 0: the slot 𝑦 has
become a redundant slot. Redundant slots represent variables that have no impact on the resulting
expression, but are still referenced in some (but not all) of its terms. When we look up terms in the
slotted e-graph, redundant slots can be matched for any variable, so that the graph from Figure 3
represents the terms: 0, 𝑦 · 0, but also 𝑥 · 0, and generally all multiplications of any variable with 0.

2.3 Representing Symmetries

(v):

var(v)

{(a,b),(b,a)}:

+
(a) (b)

Fig. 4. The terms 𝑎 + 𝑏 and 𝑏 + 𝑎

represented in a slotted e-graph.

Another challenge of slotted e-graphs is how to represent sym-
metries of variables. If we have the term 𝑎 + 𝑏, we might want to
apply commutativity to record that 𝑎 + 𝑏 = 𝑏 + 𝑎. In a conventional
e-graph, we would now merge the e-class containing 𝑎 + 𝑏 and the
e-class containing 𝑏 + 𝑎, resulting in an e-class with two addition
e-nodes. However, in a slotted e-graph, both terms are already rep-
resented by the same class, simply invoked with a different order
of arguments. To represent this in slotted e-graphs, each e-class
stores a permutation group that records all allowed symmetries of
its slots. Figure 4 shows the slotted e-graph, where the e-class can
now be invoked either with (𝑎, 𝑏) or (𝑏, 𝑎), representing the same
equivalence class of terms.

Representing symmetries using permutation groups instead of simply storing multiple permuted
copies of the e-nodes directly has several advantages:
(a) Permutation groups are efficient. In our implementation, we use the Schreier-Sims algo-

rithm [Seress 2003], which allows us to represent exponentially many permutations using a polyno-
mial amount of space. This scales better than storing a copy for each e-node times each permutation
from your group directly.
(b) Symmetries affect the equivalence relation of the slotted e-graph. Conventional e-graphs

evaluate whether two terms are equivalent by lowering them to e-classes (or practically, e-class ids),
and evaluating whether these e-classes are equivalent. Slotted e-graphs lower terms to invocations
of e-classes instead. Hence, we need an equivalence relation between invocations of e-classes and,
therefore, in order to answer whether two different invocations of the same e-class are equivalent
or not, we are required to factor in the symmetries of that e-class.
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3 Slotted E-Graphs
In this section, we make the intuitions more concrete, presenting a formal definition of the e-graph
data structure extended with slots, and explaining how algorithms for manipulating it are affected.

3.1 Slotted Terms and the Congruence Modulo Renaming Relation
We first discuss the base language of terms that will be represented in slotted e-graphs. E-graphs
consider ground terms in a term language. With slotted e-graphs, we want to also represent (free
and bound) variables in our terms. We formulate the syntax of the term language using symbolic
expressions, like the formalization of egg [Willsey et al. 2021], with the addition of representing
free and bound variables in our terms.

function symbols 𝑓 , 𝑔

slots $𝑥, $𝑦, . . .

term children tc ::= 𝑡 | tc1, . . . , tc𝑘 | bind $𝑥 tc | $𝑥 𝑘 ≥ 1
terms 𝑡 ::= 𝑓 | 𝑓 (𝑡𝑐)

Fig. 5. The syntax of slotted terms. Extensions of ground terms in e-graphs are marked in green .

Figure 5 shows the basic syntactic constructs for building slotted terms. Extensions over tra-
ditional terms are marked with a green box . These extensions are the slots, which are variables
prefixed by a $, and a special constructor, bind $𝑥 tc, that denotes that the variable $𝑥 is bound in
the (sub-)term(s) in tc.
Slotted terms correspond very closely to nominal terms in the context of nominal rewriting,

which is a family of techniques for dealing with terms modulo 𝛼-equivalence. The core idea of
nominal rewriting is using permutations instead of substitution, and reasoning about freshness
constraints explicitly within the nominal reasoning. This avoids many of the pitfalls of capturing
in substitution. Based on this approach, congruence and unification modulo 𝛼 equivalence, are
defined with algorithms that deal with explicit namings (and renamings) instead of de Bruijn
indices [Fernández and Gabbay 2007]. Our notion of these concepts are very similar to, and inspired
by these.
Example 1 (The Language of Lambda Calculus). Lambda calculus contains four types of terms:
𝜆-abstraction, function application, variables and let. In the following, lambda, app, var and let are
the function symbols from Figure 5.

𝜆 $𝑥 . 𝑡1 is encoded as lambda(bind $𝑥 𝑡1)
𝑡1 𝑡2 is encoded as app(𝑡1, 𝑡2)
$𝑥 is encoded as var($𝑥)
let $𝑥 = 𝑡1 in 𝑡2 is encoded as let(𝑡1, bind $𝑥 𝑡2)

Note that the let(𝑡1, bind $𝑥 𝑡2) constructor has a single binder slot $𝑥 , which binds every
occurrence of $𝑥 in the body 𝑡2 of the "let", but not in the term 𝑡1 we substitute with.

Congruence Modulo Renaming. In this section, we clarify which terms are unified by slotted
e-graphs. A conventional e-graph carries out congruence closure, so it maintains a congruence
relation. A slotted e-graph maintains a more general relation that takes variables and bindings into
account: it maintains a congruence modulo renaming relation. This is very similar to nominal
equational logic [Urban et al. 2004]. It deals with renamings of slots, which we define as follows:
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Definition 1 (Slots of a Term). The slots of a term 𝑡 are defined as follows:

slots(𝑡𝑐1, . . . , 𝑡𝑐𝑘 ) :=
𝑘⋃
𝑖=1

slots(𝑡𝑐𝑖 ) slots($𝑥) := {$𝑥} slots(𝑓 ) := ∅

slots(bind $𝑥 𝑡𝑐) := slots(𝑡𝑐) \ {$𝑥} slots(𝑓 (𝑡𝑐)) := slots(𝑡𝑐)

If we interpret slots as variables in terms, then the set of slots of a term is just the set of free
variables that appear in that term.

Definition 2 (Slot Renamings). We consider renamings𝑚, which are bijections from one set of
slots to another. We write these renamings as a list𝑚 := [$𝑥1 ↦→ $𝑦1, . . . $𝑥𝑛 ↦→ $𝑦𝑛]. We define
the domain dom(𝑚) := {$𝑥1, . . . , $𝑥𝑛} and image im(𝑚) := {$𝑦1, . . . , $𝑦𝑛} accordingly.

𝑚 ∗ (𝑡𝑐1, . . . , 𝑡𝑐𝑘 ) := (𝑚 ∗ 𝑡𝑐1, . . . ,𝑚 ∗ 𝑡𝑐𝑘 ) 𝑚 ∗ $𝑥 :=𝑚($𝑥) 𝑚 ∗ 𝑓 (𝑡𝑐) := 𝑓 (𝑚 ∗ 𝑡𝑐)
𝑚 ∗ (bind $𝑥 𝑡𝑐) := bind $𝑓 (𝑚 ∗ ($𝑥 $𝑓 ) ∗ 𝑡𝑐), where $𝑓 fresh

Here, ($𝑥 $𝑓 ) is the renaming mapping $𝑥 to $𝑓 and vice-versa, and is the identity otherwise (it is
a transposition in cycle notation, cf. [Lang 2012]). Note that ∗ is also defined for renamings where the
domain is not equal to the image.2 Further, the operation𝑚 ∗𝑥 is only defined if slots(𝑥) ⊆ dom(𝑚)
to ensure that every slot in 𝑥 has an associated slot in𝑚. In our implementation, renamings are
represented by a list of key-value pairs sorted by the lexicographical order of their key slots.

Congruence Modulo Renaming. An e-graph takes a set of unions (i.e. term equations) to answer
equality queries quickly. We denote with 𝐸 the set of given term equations of the form 𝑎 ≈ 𝑏. In an
e-graph, these are all ground equations, in slotted e-graphs, they can also include variables.

The congruence modulo renaming relation builds on the regular congruence of terms (Figure 6a)
that combines the standard definition of an equivalence relation (symmetric, reflexive and transitive)
with congruence of function symbols. We adapt this relation to also cover renaming (Figure 6b).3
Further, we add the necessary rules to extend congruence to our other syntactic constructs, as well
as 𝛼-conversion and (slot) renaming. The latter two rules are covered by a single rule that renames
both bound or free variables in nominal rewriting [Urban et al. 2004].

Justifying Redundancy. We revisit the example from Figure 3 to derive redundancy from the
rules of the congruence modulo renaming relation. Consider 𝐸 = {mul($𝑥, 0) ≈ 0}. We can prove
𝐸 ⊢ mul($𝑦, 0) ≈ 0 by applying the “renaming” rule with [$𝑥 ↦→ $𝑦] on mul($𝑥, 0) ≈ 0, obtaining

𝐸 ⊢ mul($𝑥, 0) ≈ 0 ≈ mul($𝑦, 0).

In other words,𝑚𝑢𝑙 ($𝑥, 0) is equivalent to 0 but also to𝑚𝑢𝑙 ($𝑦, 0),𝑚𝑢𝑙 ($𝑧, 0) etc. Hence, we call
$𝑥 redundant. Notably, this works even if $𝑥 and $𝑦 are bound. We can prove:

𝐸 ⊢ 𝜆$𝑥 .mul($𝑥, 0) ≈ 𝜆$𝑥 .mul($𝑦, 0),

using the previous proof and the “cong. (bind)” rule. Notably, here the bound $𝑥 becomes a free
$𝑦, but it is still sound because of the equality with the term 0 where both variables do not appear.
More generally, once we have found an equation that establishes a slot is redundant, we can replace
it with any other slot (bijectively) in all contexts. Hence the original slot has lost its meaning. For
this reason, we do not keep redundant slots in our e-classes.

2More precisely, this defines a partial action [Kellendonk and Lawson 2004] of the inverse semigroup of partial permutations
on the set of variables (cf. [Lawson 1998]), but induces also a left action of the symmetric group considered as a subsemigroup.
3as mentioned above, very closely related to nominal equational logic [Urban et al. 2004]
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start
𝑎 ≈ 𝑏 ∈ 𝐸

𝐸 ⊢ 𝑎 ≈ 𝑏
reflexivity

𝐸 ⊢ 𝑎 ≈ 𝑎
symmetry

𝐸 ⊢ 𝑎 ≈ 𝑏

𝐸 ⊢ 𝑏 ≈ 𝑎

transitivity
𝐸 ⊢ 𝑎 ≈ 𝑏 𝐸 ⊢ 𝑏 ≈ 𝑐

𝐸 ⊢ 𝑎 ≈ 𝑐
congruence

𝐸 ⊢ 𝑎𝑖 ≈ 𝑏𝑖 , 𝑖 = 1, . . . , 𝑛
𝐸 ⊢ 𝑓 (𝑎1 . . . 𝑎𝑛) ≈ 𝑓 (𝑏1 . . . 𝑏𝑛)

(a) Congruence Relation

cong. (variadic)
𝐸 ⊢ tc𝑖 ≈ 𝑡𝑐′𝑖 , 𝑖 = 1, . . . , 𝑘

𝐸 ⊢ tc1, . . . , tc𝑘 ≈ tc′1, . . . , tc
′
𝑘

cong. (bind)
𝐸 ⊢ tc ≈ tc′

𝐸 ⊢ bind $𝑥 tc ≈ bind $𝑥 tc′

cong. (f)
𝐸 ⊢ tc ≈ tc′

𝐸 ⊢ 𝑓 (tc) ≈ 𝑓 (tc′)
𝛼-conversion

$𝑦 does not occur in tc

𝐸 ⊢ bind $𝑥 tc ≈ bind $𝑦 ($𝑥 $𝑦) ∗ tc

slot-renaming
𝐸 ⊢ 𝑡 ≈ 𝑡 ′ slots(𝑡), slots(𝑡 ′) ⊆ dom(𝑚)

𝐸 ⊢𝑚 ∗ 𝑡 ≈𝑚 ∗ 𝑡 ′

(b) Congruence Modulo Renaming Relation

Fig. 6. Congruence Relation and its Slotted Extensions

slotted e-class ids 𝑎, 𝑏

e-node children nc ::= 𝑚 ∗ 𝑎 | nc1, . . . , nc𝑘 | bind $𝑥 nc | $𝑥 𝑘 ≥ 1
e-nodes 𝑛 ::= 𝑓 | 𝑓 (nc)

Fig. 7. Syntax and metavariables of Slotted E-Nodes

3.2 The Slotted E-Graphs Data Structure
In this subsection, we formally introduce what a slotted e-graph is, and how it works internally.
The presentation follows closely [Willsey et al. 2021]. We mark the new additions in green .

Figure 7 describes the syntax of slotted e-nodes. The definition of e-nodes is equivalent to terms,
except that we do not recursively contain subterms, but in their place we contain renamed ids𝑚 ∗𝑎,
where𝑚 is a renaming and 𝑎 an id. A renamed id corresponds to the intuition of slot-annotated
arrows going from e-node to e-class in Figures 1-4. Thus, we can think of it as an “invocation” of
an e-class. The renaming𝑚 associates the slots from the caller-context to the slots of the e-class
that gets called. We occasionally write 𝑎[$𝑥, $𝑦, . . .], as syntactic sugar for𝑚 ∗ 𝑎 if𝑚 maps slots(𝑎)
(lexicographically ordered) to $𝑥 , $𝑦, . . ..

A key idea behind e-graphs is how they replace the recursive children in terms with ids that serve
as “pointers”, which can now point at e-classes instead of concrete subterms. In slotted e-graphs,
where terms have slots, ids are not enough as pointers, we also need a renaming. This means that
we need slotted versions of the data structures that also keep track of these renamings. Similarly,
comparing e-nodes becomes more complicated because of the renamings. To deal with this, we
define a renaming-invariant normal form for an e-node, called its “shape”. It allows us to decompose
each e-node into its canonicalized shape and a renaming. Next we introduce slotted variants of the
e-graph data structures, union-find and hashcons, and explain how they interact with each other.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 223. Publication date: June 2025.



Slotted E-Graphs 223:9

Definition 3 (Slotted E-Graph). A slotted e-graph is a triple (𝑈 ,𝑀,𝐻 ) where
• 𝑈 is a slotted union-find, which provides a function find from renamed ids to equivalent

renamed ids with a canonical id.
• 𝑀 is a mapping from slotted e-class ids to slotted e-classes.
• 𝐻 is the hashcons, a mapping from shapes to slotted e-class ids.

Definition 4 (Slotted E-Class). A slotted e-class is a triple (𝑆, 𝐵,𝐺), where

• 𝑆 is a set of slots. They represent the “free variables”, or “free slots” of this e-class. The set
𝑆 is drawn in the header of an e-class in Section 2.

• 𝐵 is a hash map from shapes to renamings. 𝐵 represents the set of e-nodes that is contained
in this e-class, but decomposed into shapes. 𝐵 maps the shapes contained in the e-class to a
renaming, associating the slots of the shape to the slots 𝑆 of this e-class. To aid intuition, we
say that the e-class (𝑆, 𝐵,𝐺) contains the e-nodes𝑚 ∗ 𝑛 for (𝑛,𝑚) ∈ 𝐵.
Further, for all (𝑛,𝑚) ∈ 𝐵, we require slots(𝑛) = dom(𝑚) and 𝑆 ⊆ im(𝑚). All slots that
are contained in e-nodes of this e-class (or equivalently in im(𝑚)), but not in 𝑆 are called
redundant.

• 𝐺 is a permutation group . 𝐺 is a set of renamings with domain and image 𝑆 . 𝐺 expresses
which symmetries this e-class has, as shown in Figure 4.

For a slotted e-class 𝐶 = (𝑆, 𝐵,𝐺), we write 𝐶.𝑆 , 𝐶.𝐵 and 𝐶.𝐺 to denote 𝑆 , 𝐵 and 𝐺 .

We require that, for a slotted e-graph, 𝐻 [𝑛] = 𝑎 iff 𝑛 ∈ dom(𝑀 [𝑎] .𝐵). This is our version of the
hashcons invariant from [Willsey et al. 2021], ensuring that our hashcons is kept up-to-date about
which e-classes contain which shape. Further, we require that our hashcons 𝐻 only references
leader ids (cf. Definition 5).

We can extend the definitions of the slots function and the (partial) action𝑚 ∗𝑋 from terms and
term-children to e-nodes and e-node children analogously. For the additional case of renamed ids
𝑚 ∗ 𝑎, we define:

slots(𝑎) := 𝑀 [𝑎] .𝑆 slots(𝑚 ∗ 𝑎) :=𝑚 slots(𝑎) = {𝑚($𝑦) | $𝑦 ∈ slots(𝑎)}
𝑚 ∗ (𝑚′ ∗ 𝑎) := (𝑚 ∗𝑚′) ∗ 𝑎 𝑚 ∗𝑚′ :=𝑚 ◦𝑚′

Definition 5 (Slotted Union-Find). The slotted union-find 𝑈 is a hash map from a slotted e-class
id to a renamed id. We call an id 𝑎 a leader if there exists an𝑚 such that𝑈 [𝑎] =𝑚 ∗ 𝑎, otherwise
a follower. Further, we require that𝑚 = id𝑀 [𝑎] .𝑆 holds for all leaders. We say that a renamed id
𝑚 ∗ 𝑎 is a leader, if 𝑎 is a leader and dom(𝑚) = slots(𝑎), otherwise a follower.

The find function converts any renamed id to an equivalent leader, computed as the fixed point:

find(𝑚 ∗ 𝑎) :=
{
𝑚 ∗ 𝑎, if𝑚 ∗ 𝑎 is a leader
find(𝑚 ∗𝑈 [𝑎]), if𝑚 ∗ 𝑎 is a follower

We use the collapsing rule (or “path compression”) from [Tarjan 1975] to efficiently compute find.
We require slots(𝑈 [𝑎]) ⊆ slots(𝑎) for all 𝑎. Thus, leaders have a minimal set of slots, when

compared to their followers. Or conversely, leaders have a maximal set of redundant slots.

Note that while every id has a unique id as its leader, not every renamed id has a unique renamed
id as leader. This is due to the fact that leader renamed ids might have other leader renamed ids
that are equivalent based on a group symmetry. To respect this, we need to take extra care to define
shapes, our canonicalized e-nodes, later on.
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Example 2 (Union-Find Merge). Consider two e-class ids 𝑐1 and 𝑐2 with slots(𝑐1) = {$𝑥, $𝑦} and
slots(𝑐2) = {$𝑎, $𝑏}. Let’s assume we want to establish that 𝑐1 [$𝑙, $𝑟 ] is equivalent to 𝑐2 [$𝑙, $𝑟 ].
This requires us to merge the underlying e-classes (for example 𝑐2 into 𝑐1). When merging these
two e-classes, we need to establish which slot from 𝑐1 corresponds to which slot from 𝑐2. As we
want to unify 𝑐1 [$𝑙, $𝑟 ] = [$𝑥 ↦→ $𝑙, $𝑦 ↦→ $𝑟 ] ∗ 𝑐1 with 𝑐2 [$𝑙, $𝑟 ] = [$𝑎 ↦→ $𝑙, $𝑏 ↦→ $𝑟 ] ∗ 𝑐2, we
end up with the renaming [$𝑎 ↦→ $𝑥, $𝑏 ↦→ $𝑦], by combining both renamings. Hence, to express
that 𝑐2 was merged into 𝑐1, we set𝑈 [𝑐2] := [$𝑎 ↦→ $𝑥, $𝑏 ↦→ $𝑦] ∗ 𝑐1. Afterwards find(𝑐1 [$𝑥, $𝑦])
remains as-is, but find(𝑐2 [$𝑎, $𝑏]) returns 𝑐1 [$𝑎, $𝑏].

3.3 Equivalence in Slotted E-Graphs
As slotted e-graphs represent sets of terms, we also need to extend the equivalence relation ≈ on
terms to e-graphs. For this we define an equivalence relation � over e-nodes, so that 𝑛 � 𝑛′, if
and only if the equivalence of 𝑛 and 𝑛′ can be proven using the rules defined in Figure 6. The key
difference between e-nodes and terms is that they recurse using renamed ids, instead of recursively
containing terms. Thus, we need an equivalence relation (≡) for the renamed ids first:

Definition 6 (Equivalence). We define a relation ≡ on renamed ids as follows: 𝑚1 ∗ 𝑎1 ≡ 𝑚2 ∗ 𝑎2,
iff find( 𝑚1 ∗ 𝑎1) = 𝑚′

1 ∗ 𝑐 and find( 𝑚2 ∗ 𝑎2) = 𝑚′
2 ∗ 𝑐 , with𝑚′−1

2 ∗𝑚′
1 ∈ 𝑀 [𝑐] .𝐺 . Similarly, we

define a relation � between e-nodes as follows:
$𝑥 � $𝑥 𝑚 ∗ 𝑎 � 𝑚′ ∗ 𝑎′, if 𝑚 ∗ 𝑎 ≡ 𝑚′ ∗ 𝑎′

𝑓 (𝑥) � 𝑓 (𝑦), if 𝑥 � 𝑦 𝑥1, . . . , 𝑥𝑘 � 𝑥 ′1, . . . , 𝑥
′
𝑘
, if 𝑥𝑖 � 𝑥 ′𝑖 for all 𝑖

bind $𝑠1 𝑥 � bind $𝑠2 𝑦, if ($𝑠1 $𝑓 ) ∗ 𝑥 � ($𝑠2 $𝑓 ) ∗ 𝑦, where $𝑓 fresh

In order to detect whether two e-classes contain e-nodes that are equal up to renaming, we
compute a name-independent normal form of e-nodes, called shapes.

Definition 7 ( Shapes ). The e-node 𝑛′ is the shape of an e-node 𝑛, if there exists a renaming𝑚, s.t.
(1) 𝑛 � 𝑚 ∗ 𝑛′ and dom(𝑚) = slots(𝑛′)
(2) all renamed ids𝑚′ ∗ 𝑎′ occurring in 𝑛′ are leaders, i.e. find(𝑚′ ∗ 𝑎′) =𝑚′ ∗ 𝑎′.
(3) 𝑛′ is lexicographically minimal under these constraints (slots have a lexicographical ordering

starting with $0, $1, $2, . . .)

The key property of shapes is that:
shape(𝑛) = shape(𝑛′), if and only if there exists𝑚, s.t. 𝑛 � 𝑚 ∗ 𝑛′

Example 3 (A shape decomposition). The e-node 𝑓 (𝑐1 [$𝑥, $𝑦], 𝑐2 [$𝑦, $𝑧])] can be decomposed
into its shape as follows:

[$0 ↦→ $𝑥, $1, ↦→ $𝑦, $2 ↦→ $𝑧] ∗ 𝑓 (𝑐1 [$0, $1], 𝑐2 [$1, $2])
assuming that 𝑐1 [$𝑥, $𝑦] and 𝑐2 [$𝑦, $𝑧] are leaders, and cannot be further canonicalized.
We will go into more detail about how to compute shapes, later in this section.

The slotted e-graph represents, just like a conventional e-graph, an equivalence relation over
terms. We can now finally introduce a relation describing which terms are contained in which
equivalence class: Recall that e-nodes and terms have equivalent definitions, except that terms
recurse by containing subterms, whereas e-nodes recurse using renamed ids. Thus, an e-node 𝑛
represents a term 𝑡 , if the renamed ids of 𝑛 represent the subterms of 𝑡 , and 𝑛 and 𝑡 are otherwise
equal. Similarly, a renamed id𝑚 ∗ 𝑎 represents a term 𝑡 , if𝑚 ∗ 𝑎 represents an e-node 𝑛 which in
turn represents 𝑡 . For this, we need to define representation for e-nodes too:
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Definition 8 (Representation of e-nodes). We say an renamed id𝑚 ∗ 𝑎 represents e-node 𝑛, if
(1) there exists a leader 𝑚′∗ 𝑎′ with 𝑚′∗ 𝑎′ ≡ 𝑚 ∗ 𝑎,
(2) 𝑛′ := 𝑠ℎ𝑎𝑝𝑒 (𝑛) satisfies 𝐻 [𝑛′] = 𝑎′, and
(3) there exists𝑚′′ ⊇ 𝑚′, s.t. 𝑛 � 𝑚′′ ∗𝑀 [𝑎′] .𝐵 [𝑛′]∗ 𝑛′

We do not require𝑚′ ∗ 𝑎′ = find(𝑚 ∗ 𝑎), so that symmetry-equivalent leaders to find(𝑚 ∗ 𝑎) are
not excluded. Further,𝑚′′ ⊇ 𝑚′ allows an arbitrary renaming for the redundant slots.

This definition entails that if𝑚 ∗ 𝑎 is leader that represents an e-node 𝑛, then 𝐻 [shape(𝑛)] = 𝑎.
And conversely, if 𝐻 [shape(𝑛)] = 𝑎, then there exists𝑚, s.t.𝑚 ∗ 𝑎 represents 𝑛.

3.4 Enforcing Slotted E-Graphs Invariants
So far we have discussed slotted e-graphs in a relatively static fashion: e.g. how they represent
equivalent terms, but not how we extend them with new equivalences, nor why this is correct. The
rest of this section discusses the process of merging in slotted e-graphs, and the invariants that we
use for that.

A key invariant of a slotted e-graph is that if two renamed ids𝑚1 ∗ 𝑎1 and𝑚2 ∗ 𝑎2 both represent
the same e-node 𝑛, then they have already been merged (𝑚1 ∗𝑎1 ≡𝑚2 ∗𝑎2). To enforce this invariant,
we have the following rebuilding procedure:

if𝑚1 ∗ 𝑎1 . 𝑚2 ∗ 𝑎2 both represent the same e-node 𝑛,
then merge them using union(𝑚1 ∗ 𝑎1,𝑚2 ∗ 𝑎2)

Calling union(𝑚1 ∗ 𝑎1,𝑚2 ∗ 𝑎2) guarantees that 𝑚1 ∗ 𝑎1 ≡ 𝑚2 ∗ 𝑎2 holds afterwards. Further,
union merges e-classes together, preventing the e-node from being stored unnecessarily often in
memory. We make use of the hashcons 𝐻 to detect whether two distinct renamed ids represent
the same e-node. Whenever an e-node 𝑛 is represented by a leader𝑚1 ∗ 𝑎1, then 𝐻 [shape(𝑛)] = 𝑎1.
Hence, if the e-class of some other leader 𝑎2 changes so that𝑚2 ∗𝑎2 now also represents 𝑛, it tries to
overwrite the hashcons with 𝐻 [shape(𝑛)] = 𝑎2. At this point, we check whether there has already
been a previous value in 𝐻 [shape(𝑛)], which means we have found a collision, and we can merge
both e-classes.

Shape Computation. Every e-node𝑛 can be decomposed into its shape and a renaming, s.t.𝑛 � 𝑚∗𝑛′.
But how do we compute the renaming 𝑚 and the shape 𝑛′? First, we canonicalize all renamed
ids in 𝑛 using the find function of the union-find. In conventional e-graphs, this is the only step
required to canonicalize an e-node. In slotted e-graphs, however, we also need to canonicalize the
slot names.
To perform the canonicalization of slot names, we consider the syntactic representation of 𝑛,

wherewe use the 𝑐 [$𝑥, $𝑦, . . .] syntax for renamed ids.We iterate over the slots of this representation,
left-to-right, s.t. whenever we see a slot that we haven’t seen before, we map all occurrences of it
to the lowest possible unused slot from $0, $1, $2, . . .. This way, we guarantee that, independent
of the original slot names, the canonicalized slots are lexicographically minimal, as required in
Definition 7. As an example, let us consider the e-node 𝑛 = 𝑙𝑒𝑡 (𝑐1 [$𝑥, $𝑦], bind $𝑧 𝑐2 [$𝑧, $𝑦]) that
would be decomposed into𝑚 ∗ 𝑛′ = [$0 ↦→ $𝑥, $1 ↦→ $𝑦] ∗ 𝑙𝑒𝑡 (𝑐1 [$0, $1], bind $2 𝑐2 [$2, $1]).

Shape Computation Respecting Symmetries. We need to take special care of symmetries when
computing shapes. As mentioned before, canonicalizing renamed ids using the unionfind does not
find a unique leader, in case the leader has symmetries. Thus, it could be that the leader returned
to us by unionfind does not result in the lexicographically minimal e-node, which we require to
compute the shape.
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To demonstrate this problem, we use the example from above. Assume that 𝑐2 [$𝑎, $𝑏] ≡ 𝑐2 [$𝑏, $𝑎]
is an established symmetry. Then the correct shape to compute should be [$0 ↦→ $𝑥, $1 ↦→
$𝑦] ∗ let (𝑐1 [$0, $1], bind $2 𝑐2 [$1, $2] ), where the changes compared to the example without
the symmetry are highlighted in blue. We can see that the two computed shapes are equivalent,
but the second one is lexicographically smaller. Choosing the right symmetries that yield the
lexicographically smallest e-node cannot be done greedily after we have already mapped the slots
to $0, $1, . . ., as it can result in a local minimum.
Finding the shape while respecting symmetries boils down to a finding a canonical (i.e. lexico-

graphically minimal) element in a double coset, as covered in [Butler 1984]. Since the sizes of the
groups have not been a bottleneck thus far, in the implementation we currently brute-force over all
possible symmetries of the renamed ids contained in our e-nodes, to determine the minimum.

E-Node Collisions Within E-Classes. At the beginning of this section, we described how we can
detect whenever two e-classes require to be merged as they represent the same e-node, making use
of the hashcons. However, in some cases we require to merge an e-class with a different invocation
of itself, resulting in a symmetry. This has to be detected and handled specially.

To understand the problem, consider an e-class id 𝑐 , with the established symmetry 𝑐 [$𝑥, $𝑦] ≡
𝑐 [$𝑦, $𝑥] and another e-class 𝑑 [$𝑥, $𝑦] containing the e-node 𝑖 (𝑐 [$𝑥, $𝑦]). By congruence, the
symmetry 𝑐 [$𝑥, $𝑦] ≡ 𝑐 [$𝑦, $𝑥] should entail 𝑖 (𝑐 [$𝑥, $𝑦]) � 𝑖 (𝑐 [$𝑦, $𝑥]) and thus 𝑑 [$𝑥, $𝑦] ≡
𝑑 [$𝑦, $𝑥]. However, this equation cannot be found purely using the hashcons.

To solve this issue, we check whenever we recompute the shape of an e-node, whether this shape
establishes another symmetry. Recall that we iterate over all possible symmetries in the shape
computation. Whenever we detect that two sets of invocations result in the same shape, we derive a
symmetry from it. For our example, when computing the shape of 𝑖 (𝑐 [$𝑥, $𝑦]). We would consider
both 𝑖 (𝑐 [$𝑥, $𝑦]) � [$0 ↦→ $𝑥, $1 ↦→ $𝑦] ∗ 𝑖 (𝑐 [$0, $1]) and the permuted form 𝑖 (𝑐 [$𝑦, $𝑥]) � [$0 ↦→
$𝑦, $1 ↦→ $𝑥] ∗ 𝑖 (𝑐 [$0, $1]). And as we notice that both yield the same shape, we have detected
another symmetry [$0 ↦→ $𝑥, $1 ↦→ $𝑦] ∗ [$0 ↦→ $𝑦, $1 ↦→ $𝑥]−1 = [$𝑥 ↦→ $𝑦, $𝑦 ↦→ $𝑥] for 𝑑 .

3.5 Merging Slotted E-Classes
In this section we explain how — and why — the union operation works in a slotted e-graph. After
performing the operation union(𝑚1 ∗ 𝑎1,𝑚2 ∗ 𝑎2), the equivalence𝑚1 ∗ 𝑎1 ≡𝑚2 ∗ 𝑎2 is recorded by
the graph. Depending on how it is called, the function establishes redundancies, symmetries, or
merges e-classes. Assuming that𝑚1 ∗ 𝑎1 and𝑚2 ∗ 𝑎2 are already canonicalized by the union-find,
the 𝑢𝑛𝑖𝑜𝑛 procedure consists of three steps:

1. Establish redundant slots. If slots(𝑚1 ∗ 𝑎1) ≠ slots(𝑚2 ∗ 𝑎2), we establish redundant slots.
Concretely, this means that the slot set𝑀 [𝑎1] .𝑆 shrinks so that it becomes a subset of 𝑠𝑙𝑜𝑡𝑠 (𝑚−1

1 ∗
𝑚2 ∗ 𝑎2), and𝑀 [𝑎2] .𝑆 analogously. Note that whenever a slot is marked redundant, then also all
slots in the same orbit of the permutation group needs to be marked as redundant. Or in short, if
you can swap $𝑥 with $𝑦 by a symmetry, then if $𝑥 is redundant also $𝑦 needs to be redundant.

2. Add a group symmetry. If the two ids coincide, i.e. 𝑎1 = 𝑎2 = 𝑎 for some 𝑎, then we add a
group symmetry to the e-class id 𝑎. For example, if 𝑠𝑙𝑜𝑡𝑠 (𝑎) = {$𝑥, $𝑦} and we union 𝑎[$𝑥, $𝑦]
with 𝑎[$𝑦, $𝑥], then we add the symmetry [$𝑥 ↦→ $𝑦, $𝑦 ↦→ $𝑥] to the permutation group of 𝑎. In
general, the resulting permutation is𝑚−1

1 ∗𝑚2.

3. Merge e-classes. If the two ids differ, i.e. 𝑎1 ≠ 𝑎2, then we do “classical merging” of two e-
classes, where one e-class gets merged into the other. Note that the renaming𝑚−1

1 ∗𝑚2 tells us
which slots in 𝑎2 correspond to which slots in 𝑎1, so that we can merge them accordingly. We set
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𝑈 [𝑎2] :=𝑚−1
1 ∗𝑚2 ∗ 𝑎1 to make 𝑎2 a follower of 𝑎1, while respecting the renaming between their

slots. When merging 𝑎2 into 𝑎1, we move all the shapes from one 𝑎2 to 𝑎1, leaving 𝑎2 empty. We
also merge the groups of both e-classes (by unioning their generators). After all, the two e-classes
are now equal, thus each symmetry established in one e-class holds for the other e-class too.
To uphold our invariants, we re-compute the shapes of all e-nodes which reference changed e-

classes, after union completed. An e-class changed, if (1) it lost a slot (a redundancy was established),
or (2) it gained a symmetry, or (3) it was merged into another e-class, and is now a follower.

3.6 E-Matching
Finally, we discuss e-matching for slotted e-graphs. For this we use an altered version of the
“abstract algorithm” presented in Figure 1 of De Moura and Bjørner [2007]. We use the following
pattern language, where extensions of ground patterns in e-graphs are marked in green :

pattern variables x

pattern children pc ::= 𝑝 | pc1, . . . , pc𝑘 | bind $𝑥 pc | $𝑥 𝑘 ≥ 1

patterns 𝑝 ::= 𝑓 | 𝑓 (𝑝𝑐) | 𝑥

We say that an e-node 𝑛 matches a pattern 𝑝 , if they are syntactically equal after replacing all
renamed ids of 𝑛, and all subpatterns of 𝑝 , by a constant, ⊥. We define the function match(𝑝,𝑚 ∗
𝑎, 𝛽,𝑚𝑝 ) where

• 𝑝 is the pattern, and𝑚 ∗ 𝑎 the renamed id we want to match against
• 𝛽 is a substitution mapping from pattern variables to renamed ids, and
• 𝑚𝑝 is a renaming that maps the slots from the e-graph to the slots of the pattern.

The match algorithm is initially called with 𝛽 = 𝑚𝑝 = ∅, and where𝑚 is the identity renaming
from 𝑠𝑙𝑜𝑡𝑠 (𝑎) to itself. The𝑚𝑎𝑡𝑐ℎ function returns a set of "matches" (pairs of (𝛽,𝑚𝑝 )).
The algorithm works as follows:

match(𝑥,𝑚 ∗ 𝑎, 𝛽,𝑚𝑝 ) =


{(𝛽 ∪ {𝑥 ↦→𝑚 ∗ 𝑎},𝑚𝑝 )}, if 𝑥 ∉ dom(𝛽),
{(𝛽,𝑚𝑝 )}, if 𝛽 (𝑥) ≡𝑚 ∗ 𝑎,
∅, otherwise

match(𝑓 ,𝑚 ∗ 𝑎, 𝛽,𝑚𝑝 ) =
{

{(𝛽,𝑚𝑝 )}, if𝑚 ∗ 𝑎 represents 𝑓 ,
∅, otherwise

match(𝑓 (𝑝𝑐),𝑚 ∗ 𝑎, 𝛽,𝑚𝑝 ) =
⋃

𝑓 (𝑛𝑐 ) is represented by𝑚∗𝑎
𝑆𝑘 ,

where𝑚1 ∗ 𝑎1, ...,𝑚𝑘 ∗ 𝑎𝑘 are the renamed ids in 𝑓 (𝑛𝑐) — 𝑝1, ..., 𝑝𝑘 are the subpatterns in 𝑓 (𝑝𝑐),𝑚′
𝑝

is the minimal renaming, s.t.𝑚′
𝑝 ∗ 𝑓 (𝑛𝑐) matches 𝑓 (𝑝𝑐), and where𝑚𝑝 ∪𝑚′

𝑝 is a bijective renaming
(if no such𝑚′

𝑝 exists, set 𝑆𝑘 := ∅), and where we define 𝑆𝑖 recursively as follows:

𝑆0 ={(𝛽,𝑚𝑝 ∪𝑚′
𝑝 )}

𝑆𝑖+1 =
⋃

(𝛽∗,𝑚∗
𝑝 ) ∈𝑆𝑖

match(𝑝𝑖+1,𝑚𝑖+1 ∗ 𝑎𝑖+1, 𝛽∗,𝑚∗
𝑝 )

Technically, if 𝑎 contains an e-node with a redundant or bound slot, it would represent infinitely
many e-nodes, due to infinitely many slots we could rename that slot to. However, for the purpose
of this algorithm, it suffices to pick any fresh slot for them.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 223. Publication date: June 2025.



223:14 Rudi Schneider, Marcus Rossel, Amir Shaikhha, Andrés Goens, Thomas Kœhler, and Michel Steuwer

3.7 Summary
In this section, we have introduced slotted e-graphs formally. Slotted e-graphs represent terms
that have variables — bound or free. We showed how this extends a congruence relation to include
renamings of variables, and how we need to extend the e-graph data structures to take these renam-
ings into account. Finally, we discussed why slotted e-graphs work, in particular, which invariants
they uphold and how merging and e-matching works in the context of slots and renamings.

4 Evaluation
We implemented the slotted e-graph data structure in an open-source Rust library called slotted.
With slotted, users of languages with variables can perform equality saturation by: (1) defining
the term language, which is easy, as variables and binders can directly be represented via slots - no
special encoding of variables is required; (2) defining rewrite rules, which is easy, as slotted allows
writing rules using familiar notation without having to worry about naming collisions, provides a
built-in mechanism to check if a slot is free in a term, and dedicated syntax for substitution - no
shifting or renaming rules are required; (3) performing equality saturation by initializing a slotted
e-graph, growing it by applying rewrites, and extracting from it.

In this section, we first demonstrate how slotted is used for rewriting in a simple array language
and systematically evaluate the benefits in terms of ease-of-use and memory efficiency compared
to egg, the state-of-the-art e-graph implementation for equality saturation.

Then, we present two practical case studies from the domains of theorem proving and compiler
optimizations that demonstrate the benefits of using slotted e-graphs in practice.

4.1 Using slotted for Rewriting in a Functional Array Language
slotted enables users to define their own language and rewrite rules while relying on an efficient,
built-in support for binders. We demonstrate this by comparing how a simple functional array
language is rewritten using slotted, versus how it is rewritten using eggwith a de Bruijn encoding
of variables, as presented in [Kœhler et al. 2024].

Our evaluation example is to optimize functional array code by exploring different ways to fuse
or fission operators, trading-off memory usage and other performance aspects, such as redundant
computations. We might want to perform the following program transformation:

𝜆𝑓1. 𝜆𝑓2 . 𝜆𝑓3. 𝜆𝑓4. 𝜆𝑦. 𝑚𝑎𝑝 (𝑚𝑎𝑝 (𝜆𝑥 . 𝑓4 (𝑓3 (𝑓2 (𝑓1 𝑥))))) 𝑦 ↦−→ (A)
𝜆𝑓1. 𝜆𝑓2 . 𝜆𝑓3. 𝜆𝑓4. 𝜆𝑦. 𝑚𝑎𝑝 (𝑚𝑎𝑝 (𝜆𝑥 . 𝑓4 (𝑓3 𝑥))) (𝑚𝑎𝑝 (𝑚𝑎𝑝 (𝜆𝑥. 𝑓2 (𝑓1 𝑥))) 𝑦) (B)

The initial program (A) applies functions 𝑓1, ..., 𝑓4 to each element of a two-dimensional matrix 𝑦
using two nested𝑚𝑎𝑝s. The alternative program (B) introduces an intermediate matrix to store the
result of first applying 𝑓1, 𝑓2 before applying 𝑓3, 𝑓4. The alternative program might be preferable,
for example, in a context where the result of applying 𝑓1, 𝑓2 to 𝑦 is reused elsewhere. (B) can be
derived from (A) by applying the following rewrite rules in the correct order:

(𝜆𝑥 . 𝑏) 𝑒 ↦−→ 𝑏 [𝑥 := 𝑒] (𝛽-reduction)
𝜆𝑥. 𝑓 𝑥 ↦−→ 𝑓 if 𝑥 not free in 𝑓 (𝜂-reduction)

𝑚𝑎𝑝 𝑓 (𝑚𝑎𝑝 𝑔 𝑦) ↦−→𝑚𝑎𝑝 (𝜆𝑥 . 𝑓 (𝑔 𝑥)) 𝑦 (map-fusion)
𝑚𝑎𝑝 (𝜆𝑥. 𝑓 𝑔𝑥) ↦−→ 𝜆𝑦. 𝑚𝑎𝑝 𝑓 (𝑚𝑎𝑝 (𝜆𝑥 . 𝑔𝑥) 𝑦) if 𝑥 not free in 𝑓 (map-fission)

This example is particularly interesting to highlight the benefits of slotted, because all 4 rewrite
rules manipulate binders, in particular eliminate or introduce new binders. Let us first look at how
easy it is to define our language and rewrite rules using slotted.
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1 define_language! {
2 pub enum ArrayLang {
3 // lambda calculus:
4 Lam(Bind<RenamedId>),
5 App(RenamedId,
6 RenamedId),
7 Var(Slot),
8 Let(RenamedId,
9 Bind<RenamedId>),
10
11 // rest:
12 Number(u32),
13 Symbol(Symbol),
14 }
15 }

15 pub fn rules() -> Vec<Rewrite<ArrayLang>> { vec![
16 // lambda calculus:
17 rw!("eta"; "(lam $x (app ?f (var $x)))" => "?f", if !slot_free_in("x", "f")),
18 rw!("beta"; "(app (lam $x ?body) ?e)" => "?body[(var $x) := ?e]"),
19 // perform substitution explicitly as an alternative to the "[_ := _]" syntax:
20 rw!("let-intro"; "(app (lam $x ?body) ?e)" => "(let ?e $x ?body)"),
21 rw!("let-unused"; "(let ?t $x ?b)" => "?b", if !slot_free_in("x", "b")),
22 rw!("let-var-same"; "(let ?e $x (var $x))" => "?e"),
23 rw!("let-app";"(let ?e $x (app ?a ?b))"=>"(app (let ?e $x ?ae) (let ?e $x ?b))",
24 if or(slot_free_in("x", "a"), slot_free_in("x", "b"))),
25 rw!("let-lam-diff"; "(let ?e $x (lam $y ?body))"=>"(lam $y (let ?e $x ?body))",
26 if slot_free_in("x", "body")),
27 // map fusion and fission:
28 rw!("map-fusion"; "(app (app map ?f) (app (app map ?g) ?arg))" =>
29 "(app (app map (lam $x (app ?f (app ?g (var $x))))) ?arg)"),
30 rw!("map-fission"; "(app map (lam $x (app ?f ?gx)))" =>
31 "(lam $in (app (app map ?f) (app (app map (lam $x ?gx)) (var $in))))",
32 if !slot_free_in("x", "f"))
33 ] }

Listing 1. slotted enables defining languages and rewrite rules while relying on built-in support for binders.
Here we define a language and rewrite rules for a functional array language in less than 40 lines.

Ease of Use. Listing 1 shows how we define our language and rewrite rules. A language with
variables in slotted is defined as an algebraic datatype, with constructors that may refer to slots
using the Slot type, renamed slotted e-class ids using the Id type, or arbitrary data (u32, Symbol).
Defining a purely syntactic rewrite rule in slotted only requires defining a left-hand-side

and right-hand-side pattern, and optionally providing a side condition for triggering the rewrite.
Variables bound inside a pattern are slots ($x), while the rest are pattern variables (?e). In particular,
there is built-in and extensible support for expressing substitution using the [_ := _] syntax (see
the "beta" rule in Line 18).4 Testing whether a slot is free inside a pattern variable instantiation is
also covered by slot_free_in (see the "eta" rule in Line 17). Common subtleties when externally
encoding binders in egg are avoided, for example there is no need to worry about name collisions
(e.g. $x and $y are guaranteed to be different in "let-lam-diff"), no need to shift any de Bruijn
indices, and no need to implement a custom free variable analysis.
All in all, our slotted implementation takes less than 35 lines of code. By contrast, in egg, a

name based implementation as in [Willsey et al. 2021] takes about 200 lines of code, while a de
Bruijn index based implementation as in [Kœhler et al. 2024] takes about 250 lines of code. Both
name based and index based implementations are tricky to get right.

Memory Efficiency. We now compare the efficiency of our slotted implementation to the effi-
ciency of a de Bruijn encoding in egg (egg-db), corresponding to prior work [Kœhler et al. 2024].
We also compare against that same de Bruijn encoding, but instead implemented in slotted
(slotted-db), without using slots. Comparing slotted-db to egg-db allows observing the over-
head and optimization potential of the slotted library compared to the egg library when slots
are not leveraged.5 All three implementations perform substitution via rewriting and pushing
the let-binding though the expression (e.g. the let-rules in Listing 1). To increase the difficulty
of rewriting (A) into (B), we add a varying amount of parameters to every function. By adding
2 parameters, we use ((𝑓1 𝑝1) 𝑝2) instead of 𝑓1, where the 𝑝𝑖 are bound at the top level. We give
rewriting a budget of 5 min and 4GB RAM, on an Intel(R) Core(TM) i7-8665U CPU.

Figure 8 shows the results in terms of number of e-nodes, memory consumption and runtime.

4The substitution syntax [_ := _] defaults to using term-based substitution, applied on the canonical term of an e-class.
However in the benchmarks we have used let-based explicit substitution.
5slotted does not use any egg code, and was built from scratch.
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Fig. 8. Number of e-nodes, amount of memory, and runtime to rewrite (A) into (B) with additional function
parameters. Unsurprisingly, the de Bruijn encoding in slotted (slotted-db) performs worse than the de
Bruijn encoding in egg (egg-db) due to the overhead of slots and missing framework optimizations. Despite
that overhead, slotted vastly outperforms egg-db thanks to the efficiency of slotted e-graphs.

First, we observe that, while slotted-db has the same amount of e-nodes as egg-db, there is an
overhead. For 3 function parameters, slotted-db uses 2.7× more memory, and runs 7.8× slower.
Part of this overhead is intrinsic to slots, but part of it is also due to the fact that egg is highly
optimized compared to slotted, as we tried to keep our implementation simple (e.g. we did not
consider cache-friendliness, deferred rebuilding or compiled e-matching).

Second, we observe that both de Bruijn implementations fail when increasing parameter count,
with an exploding amount of e-nodes, memory and runtime, while the slotted implementation
scales very well, with a consistently low amount of e-nodes, memory, and runtime. The downfall
of de Bruijn is its need to constantly shift indices, for example, fissioning one function and its
parameters triggers rewrites like the following:

𝑚𝑎𝑝 (𝜆𝑥. 𝑓 (((𝑓1 𝑝1) . . . 𝑝𝑁 ) 𝑥)) ↦−→ 𝜆𝑦. 𝑚𝑎𝑝 𝑓 (𝑚𝑎𝑝 (𝜆𝑥 .((𝑓1 𝑝1) . . . 𝑝𝑁 ) 𝑥)) 𝑦

Which triggers a shift when using de Bruijn indices:

𝑚𝑎𝑝 (𝜆. 𝑓 (((𝑓1 𝑝1) . . . ˆ𝑝𝑁 ) 0̂)) ↦−→ 𝜆. 𝑚𝑎𝑝 𝑓 (𝑚𝑎𝑝 (𝜆. ↑11 (((𝑓1 𝑝1) . . . 𝑝𝑁 ) 0̂))) 0̂

Here, ↑11 adds 1 to all indices at or above 1, which requires 𝑁 + 1 rewrites to propagate through,
copying huge parts of the e-graph as differently shifted e-classes are not considered equivalent:

↑11 (((𝑓1 𝑝1) . . . 𝑝𝑁 ) 0̂) ↦−→ (𝑁+1) (( ˆ𝑓1 + 1 ˆ𝑝1 + 1) . . . 𝑝𝑁 + 1) 0̂

Both slotted-db and egg-db exceed our 4GB budget using only 4 function parameters. Due to the
need for shifting rewrites, 14 iterations of equality saturation are required by egg-db to achieve the
goal, which takes 1827k e-nodes, 922k e-classes, 5.1GB RAM, and 52s to achieve the rewrite goal.

In comparison, slotted maintains congruence modulo renaming, avoiding these 𝑁 + 1 rewrites,
and maintaining sharing instead of duplicating e-classes purely to shift (rename) variables. Only 6
iterations of equality saturation are required independently of the number of function parameters,
requiring at most 214 e-nodes (4 orders of magnitude less), 95 e-classes, 6MB RAM (3 orders of
magnitude less), and 0.22s (1 order of magnitude less).

This experiment demonstrates that, even for such a relatively simple (albeit constructed) rewrite
goal, slotted e-graphs are orders of magnitude more efficient than an encoding with de Bruijn
indices, thanks to their built-in support for binders and congruence modulo renaming. The following
case studies demonstrate that this efficiency also translates to benefits in real workloads.
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4.2 Using slotted for Sparse Tensor Compilation with SDQL
SDQL [Shaikhha et al. 2022] is an intermediate language that can express database queries and
tensor algebra expressions in a unified manner. The central data structure behind SDQL is a semi-
ring dictionary, which can subsume collection types such as sets/bags (used in databases) and
arrays/tensors (used in tensor algebra). Furthermore, the algebraic nature of SDQL allows loop
optimizations to be expressed as local algebraic rewrite rules. For example, the following rewrite
rule has the same effect as the vertical loop fusion:

sum(<k1, v1> in
sum(<k2, v2> in R) {k2 -> body1})

body2

{
sum(<k2, v2> in R)

let <k1, v1> = <k2, body1> in
body2

The original program creates an intermediate semi-ring dictionary, which is immediately consumed.
The optimized program removes this allocation by fusing the loops. Vertical loop fusion is a crucial
optimization in data processing systems, including DB and ML systems [Shaikhha et al. 2022].
Storel [Schleich et al. 2023] uses equality saturation on top of SDQL to compile tensor algebra

computations over sparse data formats. As opposed to sparse tensor compilers such as TACO [Kjol-
stad et al. 2017], where the computation and data format are separated, Storel unifies them by
expressing both as SDQL expressions. The tensor computation is expressed as computation over
semi-ring dictionaries. The sparse data format specification is expressed as an SDQL program,
converting the physical data layout to semi-ring dictionaries. The Storel compiler uses two passes
of equality saturation: the first pass only optimizes the tensor computation, and the second pass
fuses the data format specification with the optimized tensor computation.

Due to the heavy usage of binders, the Storel system relies on the de Bruijn encoding for egg by
Koehler [2022]. It relies on 44 rewrite rules consisting of semi-ring algebraic simplifications, loop
fusion, loop-invariant code motion, normalization rules, and let-binding rules.

Implementing SDQL over Slotted E-Graphs. We reimplement Storel based on slotted e-graphs. We
generalize the original set of rewrite rules to a more fine-grained rule set. The fine-grained rule set
also uses 44 rewrite rules, however, the rewrite rules are simpler and more general than the ones
in the original coarse-grained rule set. There are rewrite rules in the original coarse-grained set
in Storel that can be derived from more fine-grained rules. For example, consider the following
rewrite rule, which removes an intermediate semi-ring dictionary:

(sum(<k, v> in R) {k -> body})(idx) { let k = idx in let v = R(k) in body

This rewrite rule can be recovered by composing the following set of more general rewrite rules:
(sum(<k, v> in R) {k -> body})(idx)

{ sum (<k1,v1> in (sum(<k,v> in R) {k->body})) if(k1 == idx) v1

{ sum(<k, v> in R) let <k1,v1> = <k,body> if(k == idx) v1

{ sum(<k, v> in R) if(k == idx) body { let k = idx in let v = R(k) in body
Furthermore, this opens up opportunities to compose these fine-grained rules to create complicated
rewrites that are missing from the coarse-grained ones. However, these more basic rewrite rules
lead to a larger search space. We report the results for the fine-grained rule sets that make the
scalability more challenging.

Performance of Slotted E-Graphs. Table 1 shows the compilation metrics for slotted compared
with egg. We set a limit on memory usage, terminating equality saturation when the memory usage
exceeds 1.5GB. In all cases, both systems find the best program, except for the second phase of
MTTKRP, as will be discussed later.
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Kernel System Iters. Nodes Classes Saturated Memory (MB)

ΣMMM (1st) egg 10 84 34 ✓ 1.77
slotted 5 30 15 ✓ 2.69

MTTKRP (1st) egg 18 2,240 300 ✓ 4.34
slotted 8 466 59 ✓ 5.89

MMM (1st) egg 18 673 151 ✓ 2.77
slotted 9 130 27 ✓ 3.61

TTM (1st) egg 17 2,655 298 ✓ 3.36
slotted 9 280 47 ✓ 4.05

BATAX (1st) egg 148 1,401,722 1,108,225 ✗ 1570.02
slotted 13 97,238 16,767 ✗ 1705.47

ΣMMM (2nd) egg 49 14,334 2,890 ✓ 14.92
slotted 15 314 75 ✓ 3.94

MTTKRP (2nd) egg 424 2,970,959 378,263 ✗ 1691.17
slotted 25 4,891 307 ✓ 75

MMM (2nd) egg 252 287,536 21,582 ✓ 209.91
slotted 18 1,308 128 ✓ 18.72

TTM (2nd) egg 421 2,641,070 496,441 ✗ 1540.89
slotted 25 2,044 196 ✓ 29.98

BATAX (2nd) egg 394 2,386,580 506,848 ✗ 1833.28
slotted 12 71,643 10,435 ✗ 1585.77

Table 1. Compilation metrics reported by egg and slotted. Both systems find the best program in all cases
(except for MKTTKRP as can been in Table 2).

Weobserve that the 1st phase of the compiler inmost kernels saturates, and both systems consume
a similar amount of memory. However, the number of e-nodes and e-classes is significantly less
for slotted e-graphs. The situation for the 2nd phase of the compiler is different. Slotted e-graph
saturates for all kernels except for the BATAX kernels, due to the extensive use of associativity
rules. However, egg cannot saturate for the TTM and MTTKRP kernels, despite using an order of
magnitude more memory and three orders of magnitude more e-nodes and e-classes.
The more fine-grained set of rewrite rules makes the compiler more general. Furthermore, the

specialized coarse-grained rules (such as the one expressed above) can be recovered by the fine-
grained rules. However, this recovery leads to a larger search space and can result in not extracting
the optimized program given a memory/time budget.

Table 2 shows the comparison of egg and slotted for the second phase of the MTTKRP kernel.
For completeness, here we also include both the coarse-grained rule sets used in Storel. When
using the fine-grained set of rewrite rules, the egg framework fails to saturate and cannot find the

System Rewrite Space Iters. Nodes Classes Saturated Memory Best Found
(MB) (Iter #)

egg
Fine-grained 424 2,970,959 378,263 ✗ 1691.17 ✗

Coarse-grained 419 1,256,975 76,589 ✓ 1000.48 ✓ (18)

slotted
Fine-grained 25 4891 307 ✓ 75 ✓ (12)

Coarse-grained 21 2316 205 ✓ 26.98 ✓ (12)

Table 2. Compilation metrics reported by egg and slotted for the second phase of MTTKRP based on the
coarse- and fine-grained set of rewrite rules.
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optimized program. However, with the coarse-grained set of rewrite rules, given the smaller search
space, egg successfully saturates and finds the optimized program. In particular, for coarse-grained
rewrite rule set, it requires 20× fewer iterations to saturate. slotted finds the best program after 12
iterations for both rewrite sets, whereas egg needs 18 iterations for the coarse-grained rewrite space.
Furthermore, slotted successfully saturates in both cases, requiring two orders of magnitude less
memory and three orders of magnitude less e-nodes and e-classes.

4.3 Using slotted for Theorem Proving with Lean
Interactive theorem proving provides an environment in which users construct mathematical
proofs. Users are supported by the computer, which checks that proofs are indeed correct and
assists by providing capabilities for constructing some proofs automatically. Theorem proving is an
interesting use case for equality saturation, as it does not aim to optimize an initial term, as we did
in the prior case study. Instead, it reasons about the equality of two terms.

Kœhler et al. [2024] integrated the equality saturation engine egg for use as a proof tactic in the
Lean theorem prover [de Moura and Ullrich 2021]. Notably, this proof tactic omitted important
fragments of Lean’s expression language, including all forms of binders. Rossel [2024] extended the
supported fragment to include binders, aiming to address two necessary considerations:
(1) Which (definitional) equality or reduction rules relating to binders are built into Lean’s type

theory, and how to encode them in an e-graph?
(2) Which problems arise during syntactical rewriting over expressions containing de Bruijn

variables, and how to detect and resolve them during equality saturation?
To address (1), rewrites which encode Lean’s only two definitional equality rules for binders were

implemented: 𝛽-reduction and 𝜂-reduction [Carneiro 2024].6 In de Bruijn representation, these are:

(𝜆𝑒) 𝑎 →𝛽 ↓(𝑒 [0̂ := ↑𝑎]) 𝜆(𝑒 0̂) →𝜂 ↓𝑒 if 0̂ ∉ fvars(𝑒)
𝛽-reduction requires shifting de Bruijn indices (written as ↓ and ↑) as well as a substitution

operator (written as [· := ·]). The simpler 𝜂-reduction only requires a shifting operator, but is also
contingent upon a precondition which requires the ability to query the set of free variables.

To address (2), checks are added in every rewrite rule to detect and, if possible, resolve problems
which can occur during syntactic rewriting of expressions containing de Bruijn variables. A widely
known example of such a problem is invalid capture of variables during substitution. Other problems
of this kind are referred to as Invalid Matching Problems (1) and (2) in [Rossel 2024], and a problem
called Invalid Non-Matching discussed in [Koehler 2022].

In summary, rewriting Lean expressions in de Bruijn representation in egg requires introducing
non-trivial machinery to represent definitional equality rules (Consideration 1), as well a variety of
checks and corrections to be performed on all rewrites (Consideration 2).
In this case study, we have thus extended the open-source proof tactic with a new alternative

backend based on the slotted implementation, as sketched in Figure 9.

6This is a slight simplification and based on Lean’s algorithmic definitional equality relation.

egg Tactic preprocessing
slotted

egg

slots

de Bruijn

encoding

Explanation

Explanation

equality
saturation

decoding Proof

proof
reconstruction

Fig. 9. Overview of our integration of slotted into the egg proof tactic.
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Problem Slotted De Bruijn Named

Invalid Capture automatic manual manual
Invalid Matching (1) automatic manual manual
Invalid Matching (2) manual (simple) manual (complex) manual (complex)
Invalid Non-Matching automatic manual manual
Free Variable E-Class Analysis not required required required
Shifting/Renaming Operation not required required required
Substitution Operator required required required

Table 3. Comparison of the implementation complexity for handling Lean expressions with binders.

Implementation Complexity. An immediate benefit we observe by using slotted e-graphs is a
significant reduction in implementation complexity for handling binders correctly. Table 3 lists the
aforementioned problems encountered when using binders in e-graphs and compares the effort
required to address them for de Bruijn and named representations in e-graphs, versus slotted.
We observe that most problems simply cannot occur in slotted e-graphs and thus require no

attention. The notion of a shifting/renaming operation is not required, simplifying the implementa-
tion of 𝛽- and 𝜂-reduction. There is no need for an e-class analysis tracking free variables. And
while an explicit substitution operator is still required, we simply use the one provided by slotted.

Where slotted e-graphs do not automatically solve a problem, they still simplify manual imple-
mentation. One example of this is addressing the Invalid Matching Problem (2), which occurs when
the rewrite (𝜆. ?𝑥) 𝑐 ⇒ ?𝑥 is applied to (𝜆. 0̂) 𝑐 , producing the invalid open term 0̂. The underlying
issue is that pattern variables are not allowed to match against variables which are introduced by
binders in the rewrite’s pattern. In [Rossel 2024] this is addressed in egg by a non-trivial traversal
of a rewrite’s pattern while tracking positions and depths of binders to match them to de Bruijn
indices. In slotted e-graphs we can address this problem directly as slots are comparable without
knowledge of their binder. If 𝑃 denotes the set of slots appearing in the rewrite’s pattern and 𝑆 (𝜎)
denotes the slots appearing in the renamed identifiers contained in the substitution 𝜎 , then 𝜎 is a
valid if 𝑃 and 𝑆 (𝜎) are disjoint. That is, in our implementation, we simply check 𝑃 ∩ 𝑆 (𝜎) = ∅.

Efficacy of Slotted E-Graphs for Real-World Examples. We evaluate the efficacy of slotted e-graphs
for automated equational reasoning in Lean by proving real-world theorems using both egg and
slotted as backends to the extant egg Lean proof tactic. For this purpose, we consider theorems
from the Lean mathematics library Mathlib [mathlib Community 2020]. To identify candidate
theorems, we override the behavior of Lean’s simplifier tactic simp only to call the egg tactic
under the hood, while checking that we close the current proof goal, which we require to be an
equality. Given these constraints, we obtain 492 test cases, which we run with a 30-second timeout.
We eliminated 65 cases which failed in the Lean pre- or post-processing. Table 4 compares egg and
slotted on the remaining 427 cases, of which both were able to successfully prove 290, about 68%.

Backend Successful Proven Theorems Average Explanation Length ...With Binders

slotted 290 6.2 6.7
egg 290 5.4 12.7

Table 4. Comparison of the egg and slotted backends on 427 simple test cases from Mathlib.
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Considering the successful test cases, 30 involved rules relating to binders (𝛽-, 𝜂-reduction,
shifting, substitutions) in their resulting explanation. For these test cases, we list the explanation
length metric separately. We find that both backends manage to prove the exact same theorems,
with slotted e-graphs requiring 9% fewer e-nodes on average for tests involving binders. We also see
a clear effect on explanation length when binders are involved, with slotted e-graphs producing 47%
shorter explanations on average. This can be attributed to the fact that explanations for e-graphs
using de Bruijn indices include pervasive uses of variable shifts.

While increased explanation length does not pose a problem for the simple simp only test cases,
it can do so for more complex theorems. Consider the following example from Mathlib – a theorem
from order theory characterizing sup-prime elements in semilattices:
theorem not_supPrime : ¬SupPrime a ↔ IsMin a ∨ ∃ b c, a ≤ b ⊔ c ∧ ¬a ≤ b ∧ ¬a ≤ c

:= by egg [not_forall, not_exists, ..., SupPrime]

In Mathlib, this theorem is solved by combining push_neg, a dedicated tactic for pushing nega-
tions into logical connectives, with specific rewrites about the concrete mathematical objects (here,
sup-prime elements). We can prove this theorem using equality saturation. While the egg backend
succeeds, it produces an explanation with 4657 proof steps, which takes the Lean tactic’s proof
reconstruction algorithm over 15 minutes to process before failing. Notably, 3793 (81%) of these
steps are only concerned with applying and propagating shifts of de Bruijn variables. In comparison,
the slotted backend succeeds in under 1 second, with an explanation of just 14 steps.
An even bigger difference occurs when trying to prove this theorem, also from order theory:

theorem not_supIrred : ¬SupIrred a ↔ IsMin a ∨ ∃ b c, b ⊔ c = a ∧ b < a ∧ c < a := by
have h x y : x ⊔ y = a ∧ ¬x = a ∧ ¬y = a ↔ x ⊔ y = a ∧ x < a ∧ y < a := by ...
egg [not_forall, not_exists, ..., SupIrred, exists2_congr h]

With the egg backend, we never manage to prove the theorem. After 5 minutes, the e-graph
already explodes to 2.6 million e-nodes. Running the example for 3 hours peaked at 40GB of memory
usage before crashing. With slotted, we prove this theorem in less than 1 second.

5 Related Work
E-Graphs and Equality Saturation. E-Graphs were originally proposed as an efficient data struc-

ture for maintaining congruence closure [Kozen 1977; Nelson and Oppen 1980]. Egg [Willsey
et al. 2021] has re-ignited interest in using the data structure for equality saturation, due to an
efficient rebuilding technique and e-class analysis, both crucial for the practical use cases. Equality
saturation [Tate et al. 2009] uses the e-graph data structure to quickly explore a set of equivalent
terms, which is useful both in optimization and reasoning. Recent projects have explored the
use of equality saturation to optimize software [Kœhler et al. 2024; Shaikhha et al. 2022] and
hardware [Cheng et al. 2024; Wang et al. 2023] or in theorem provers [Kœhler et al. 2024; Rossel
2024] and verification [Dickerson et al. 2024], only to name a few projects.

Dealing with Variables in E-Graphs. . Conventional e-graphs do not offer any support for rep-
resenting variables. Therefore, different strategies have been developed to represent variables
in e-graphs. Cao et al. [2023] work with a first-order lambda calculus that is designed to avoid
having to deal with 𝛼-renaming during 𝛽-reduction. [Nandi et al. 2020] largely avoid bindings
in their language design preferring a combinator-style, similarly, Glenside by [Smith et al. 2021]
avoids bound variables and binders altogether. The egg paper represents variables with string
names mainly for didactic reasons, and using de Bruijn indices is reported as significantly better
by [Kœhler et al. 2024] and [Shaikhha et al. 2022], allowing significantly more complex rewrite
problems being solved using the de Bruijn encoding as with string names.
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Grechanik [2015] presents a data structure that seems similar to slotted e-graphs for a specialized
language, while using it for bisimilarity detection of programs. Their work is restricted to a fixed
language with built-in "case" expressions as binders, and cannot express arbitrary binders, as our
solution does. We developed slotted e-graphs completely independently of this work.

Dealing with Variables in Term Rewriting and Nominal Rewriting. . Dealing with variables in term
rewriting is a long-standing issue. De Bruijn [De Bruijn 1972] suggested their indexing scheme
that is still popular today in the implementation of functional languages and in rewriting.
More closely related to our treatment of variables are hierarchical abstract syntax graphs by

[Ghica 2021], that provide a graphical representation of bound terms similar to how our slotted
e-graph represents sets of terms. However, the closer formal treatment of variables are nominal
rewriting techniques [Fernández and Gabbay 2007; Urban et al. 2004] that have developed a formal
framework that integrates 𝛼-equivalence with binders in first-order syntax.

6 Conclusion
This paper introduces slotted e-graphs, an extension of e-graphs, representing terms that differ
only in the names of their variables using the same e-node. E-Classes are parameterized by slots
abstracting over all free variables of the equivalent terms represented by its e-nodes. Referring to
an e-class from an e-node relates the free variables from the e-node’s context to the e-class’ slots.

We have shown, that slotted e-graphs formally maintain an extended congruence relation with
slots, that considers terms as equal if they only differ by the names of their variables. The data
structure enforces its invariants using a slotted version of union-find and by computing the shapes
of e-nodes, a normal form with canonical names for the e-nodes’ free variables.
Using our slotted implementation, representing languages with variables, such as lambda

calculus is greatly simplified, as no dedicated encoding of variables, e.g., using de Bruijn indices is
required. Rules are expressed naturally with built-in support for substitution and built-in support
for tracking free slots. Our evaluation of two case studies shows, that slotted e-graphs require orders
of magnitude less memory than conventional e-graphs for practically relevant rewrite problems
and that slotted e-graphs can solve rewrite problems that conventional e-graphs can’t.
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