
Provable Determinism for Software in
Cyber-Physical Systems

Marcus Rossel1, Shaokai Jerry Lin2, Marten Lohstroh2, Jeronimo Castrillon1,
and Andrés Goens34

1 TU Dresden, Germany {marcus.rossel,jeronimo.castrillon}@tu-dresden.de
2 UC Berkeley, USA {shaokai,marten}@berkeley.edu

3 The University of Edinburgh, UK
4 University of Amsterdam, Netherlands a.goens@uva.nl

Abstract. In Cyber-Physical Systems (CPS), concurrently executing
software components interact with each other and the physical envi-
ronment to deliver functionality that is often safety-critical and time-
sensitive. Verifying the correctness of the joint behavior of concurrent
software components, however, is challenging. It is helpful to eliminate
nondeterminism in the software, at the level of the programming model,
and provide first-class programming constructs for expressing timed be-
havior. The Lingua Franca (LF) coordination language achieves this
through the use of the Reactor model as its underlying model of compu-
tation. In this paper, we present the first formal operational semantics for
the Reactor model, and prove its key properties of progress and determin-
ism. The Reactor model and its associated proofs are fully mechanized
in the Lean theorem prover. As an operational model, our semantics are
close to the intuition for implementation and a helpful reference. The
computational objects of the Reactor model are formalized in a modular
fashion, which provides insights into the different structural properties
of the model, and their effect on execution behavior.

1 Introduction

Cyber-physical systems (CPS) are systems where computational, digital com-
ponents have integrated physical capabilities and interact with the physical
world [4]. Designing and programming these systems brings about multiple chal-
lenges. The software has to make decisions about how to affect the physical
environment, and the system has to deliver the intended behavior at the cor-
rect time. Describing the timed behavior of interacting digital components is
one of the main challenges of modeling CPS [2,55,18], and are the subject of
study of entire subfields, like timed automata [3] or the more general hybrid
automata [22].

It is much easier to model CPS and design algorithms for them, if the be-
havior of the software can be understood as a function of the behavior in the
physical environment. But for this to be true, the software has to respond de-
terministically to inputs from the physical environment. With the software in



CPS being increasingly concurrent, due to the use of multi-core, distributed, and
networked system architectures, sophisticated coordination is required to ensure
determinism in the software. Considering this kind of coordination as part of the
application logic can lead to software that is brittle and complex, and tends to
make the software less modular and more difficult to understand. Deterministic
models of computation, which eliminate nondeterminism by construction, are an
effective way to address this problem [30,31,19]. Such models have proven very
useful in practice, particularly for the construction of CPS software [21,29,25].

Lingua Franca5 (LF) [37] is a concrete open-source framework for program-
ming CPS that has recently been gaining traction. The LF runtime enables de-
terministic concurrency without sacrificing performance [40], and the program-
ming model has an explicit notion of time [32]. At the core of LF is a model
of computation, the Reactor model [38,36,35], which offers deterministic timed
semantics.

The Reactor model already has well-specified semantics, which ought to serve
both as a specification for designing languages and be useful for reasoning about
concrete programs. However, they are defined with complicated denotational
semantics: using a superdense model of time [39], the semantics are defined
through fixpoints of an ultrametric space [14]. In particular, the semantics are
neither close to the implementation nor intuitive for programmers to understand.
This is mitigated, in part, by the fact that parts of the specification are given as
algorithms [36,35]. While the algorithms are useful for implementers, they lack
the generality of a fully abstract operational semantics.

In this paper we consider an alternative formalization of the semantics of the
Reactor model, using operational semantics [49]. Operational semantics are sim-
pler to understand, while remaining generic – they don’t tie the specification to
a concrete implementation. For reasons like these, they have become widespread
for defining the semantics of programming languages [45,46,57]. We define small-
step operational semantics for the Reactor model, providing a foundation to the
programming model that is simple and intuitive, yet rigorous.

With these operational semantics, we prove two key properties of the model:
progress (execution does not get “stuck”) and determinism. The model and its
associated proofs are fully mechanized6 in the Lean theorem prover [41]. This
mechanization provides several advantages. First, it forces us to be precise about
otherwise implicit definitions and assumptions, which is especially important in
the context of verifying computation [28]. In particular, we find multiple ways in
which the denotational semantics in [36,35] are imprecise, and make them precise.
Second, it serves as a thorough documentation of the semantics, which provides
insights into different structural properties of the model, and their consequences
on execution behavior. For example, we require reactors to be finite to prove
progress, while the proof of determinism does not need this restriction. Finally,
it aids the process of working on modifications and extensions of the model, by
uncovering where existing proofs break.

5 https://www.lf-lang.org/
6 https://github.com/lf-lang/reactor-model

https://www.lf-lang.org/
https://github.com/lf-lang/reactor-model


The rest of this paper is structured as follows. Section 2 introduces the Reac-
tor model by example and formalizes its computational objects. The operational
semantics governing the execution model are given in Section 3, and its key
properties are proven in Section 4. Finally, Section 5 covers related work and
Section 6 concludes the paper.

2 Reactors

The Reactor model is a concurrent model of computation. Computation is encap-
sulated in reactors, the most fundamental structure of the model. To introduce
reactors and their components informally, we walk through a model inspired by
the Ingenuity Mars Helicopter7 as shown in Figure 1. The helicopter uses mul-
tiple sensors, including different cameras which produce images that have to be
processed. A controller then decides how to navigate based on these inputs and
its internal logic, and controls actuators, like motors, to do so.

Fig. 1. Reactor-based model of the Ingenuity Mars Helicopter.

Each rounded rectangle in Figure 1 represents a reactor. We have expanded
certain reactors like ColorCamera to show their components, while collapsing
others like ImageProcessor where the details aren’t relevant. The ColorCamera
reactor models a camera which is continuously polled for new frames which are
then communicated to the ImageProcessor. This communication is achieved
by connections (depicted as bold lines) of ports (depicted as filled triangles).
Concretely, the ColorCamera communicates frames via its out port, which has
a connection to the ImageProcessor’s colorFrame port. Thus, when a value is
set on out it is propagated to colorFrame. Ports are read from and written to
by reactions (depicted as chevrons). Reactions are routines which can read and
write values from and to different components called their sources and effects,
which they must declare explicitly (depicted as dashed lines). When a source
that is marked as a trigger has an available value, the reaction is triggered,
executing the procedure which may read the values of its sources and set the
7 See https://www.youtube.com/watch?v=D-Y6H0GMtbM&t=465s

https://www.youtube.com/watch?v=D-Y6H0GMtbM&t=465s


values of its effects. In the example, the reaction contained in ColorCamera
would be the routine responsible for actually reading the frame from the camera.
It declares the out port as an effect, as it wants to write the frame to that port.
It also declares the signal port of the nested Timer reactor as a source. That
is, reactors can be nested in other reactors and thus form a tree structure. In
fact, the entire model is represented by the single Helicopter reactor which
contains all other reactors. The Timer reactor is used to implement polling by
setting a value on its signal port every 33 milliseconds, which in turn triggers
the ColorCamera’s reaction. To create an event delayed by 33 milliseconds, a
logical action is used (depicted as a triangle containing the letter L). Whenever
the Timer’s reaction executes, it schedules an event for the logical action with
the given delay. After the specified amount of time, the logical action makes
its value available which in turn triggers the reaction again. The circle shape
contained in the Timer depicts a special kind of trigger that is present only at
startup to bootstrap the process. Thus, upon starting the helicopter, the Timer’s
output port periodically triggers the ColorCamera’s reaction which then supplies
a steady stream of frames via its output port. These frames are propagated to
and processed by the ImageProcessor, which finally communicates its results
to the Controller. The Controller processes various inputs including the
output of a ZigbeeRadio. This radio can be used to communicate a desired
mode of operation to the Controller. For example, we may distinguish between
a manual mode for testing on earth and an automatic mode for flight on Mars.
The selected mode is stored locally in the opMode state variable. State variables
can be accessed and modified only by a reactor’s reactions. Thus, one of the
Controller’s reactions is used to set the opMode based on the ZigbeeRadio’s
input, while the other reads the opMode to determine which sensor values to
include in its navigation algorithm.

The rest of this section will introduce reactors formally. As our formaliza-
tion is mechanized in Lean, we express the following definitions in the language
of Lean’s underlying type theory [13,41], which is derived from the Calculus
of Inductive Constructions (CIC) [16,17,42]. For simplicity of the presentation,
we omit certain details and generally use more traditional mathematical (set-
theoretic) syntax. However, the full details can be found in the accompanying
mechanization, with the appendix linking to all presented definitions.

2.1 Basic Reactors

Formally, we define reactors in terms of axioms, similar to how algebraic struc-
tures like groups are defined in conventional mathematics. The canonical way
to define objects in terms of axioms in Lean is by using type classes [54].8 Thus,
we define a hierarchy of type classes for reactors which successively add axioms
until we arrive at what we call proper reactors. We split the axioms of reactors

8 Type classes are similar to (but more powerful than) interfaces in Java, traits in
Rust, protocols in Swift, etc.



into multiple type classes, as different parts of the formalization require varying
degrees of constraints.

At the base of this type class hierarchy is the class of (basic) Reactors. It states
that a reactor contains the following identifiable components: input ports, output
ports, state variables, actions, reactions and nested reactors. By “identifiable”
we mean that every component in a reactor has an associated identifier of some
opaque ID type, which can be used to reference and obtain a component from a
reactor. Formally:

Definition 1 (Reactor). A type α is a Reactor type if it has a partial func-
tion get?, which to any given element of α, component kind cpt and identifier
associates an object of type cptType(cpt, α). In Lean:

class Reactor (α : Type) where
get? : α → (cpt : Component) → ID → Option (cptType cpt α)

Lean uses ML-syntax and currying, which means that “cptType cpt α” is
the function application cptType(cpt, α). The type Option(A) extends a type A
by the distinguished element none. Thus, we consider get? to be a partial function
(a function only defined on a subset of its inputs) by returning none when the
function is undefined for a given input. The Component type defines labels for
the kinds of components listed above with the cptType function associating a
type with each of these labels:

Component = {inp, out, stv, act, rcn, rtr}

cptType(cpt, α) :=


α if cpt = rtr
Reaction if cpt = rcn
Value otherwise

Thus, for example, get?(r, rcn, i) = n means that reactor r contains a reaction
n identified by identifier i. It is important to note that the notion of containment
of a component in a reactor induced by get? is considered to be “flat”. That is,
components contained in nested reactors are not considered to be contained in
the parent reactor. For example, Figure 2 shows that the reaction contained
in the Timer reactor from Figure 1 is not considered to be contained in the
ColorCamera reactor.9

9 It would hold if ColorCamera also directly contained the reaction n and identified
it by i. In Section 2.2 we eliminate such duplicate identification with hierarchical
reactors.



Timer
ColorCamera

i : Reaction n

get?(Timer, rcn, i) = n

get?(ColorCamera, rcn, i) ̸= n

Fig. 2. Example of “flatness” of get?.

Reactions The component kinds inp, out, stv and act are similar by their as-
sociated type being Value. Thus, we collectively call them ValuedComponents.
The Value type is an opaque type (in the same way as ID) of values with a dis-
tinguished absent element. Reactions, on the other hand, as the smallest units
of computation in the Reactor model, are essentially functions with additional
structure.

Definition 2 (Reaction). A reaction is a structure (tuple) of the form:10

structure Reaction where
sources : Set (ValuedComponent × ID)
effects : Set (ValuedComponent × ID)
triggers : Set (ValuedComponent × ID)
priority : Priority
body : (ValuedComponent → ID → Option Value) → List Change

We use the names of structures’ fields to refer to the respective values. For
example, given a reaction n we write sources(n) to denote the reaction’s sources.
The set of sources identifies components which are inputs to the reaction, and
the set of effects are its outputs. A subset of the sources, called triggers, is used in
the execution model to determine whether a reaction should be executed, with
the priority affecting the order in which different reactions are executed.11 At
the heart of a reaction is its body, which is the function defining its behavior.
Its input is a map providing the values of its sources. As an output, it returns
changes, which formalize how a reaction affects its effects:

Definition 3 (Change). A Change combines an identified component with the
value that should be assigned to it. Formally:12

structure Change where
cpt : ValuedComponent
id : ID
val : Value

10 This definition omits certain edge cases for the sake of simplicity. For example, state
variables are allowed as a sources, but not as a triggers.

11 The Priority type is an opaque type with a partial order.
12 This definition is slightly simplified. The type of the value actually depends on the

specific valued component. For act the associated value has type Time × Value.



This can be seen as a special case of algebraic effects [48,26], as will be-
come clearer in Section 3 when we define the execution semantics. We note that
our rigorous definition of reaction bodies fills a gap in the formal treatment of
reactions in [36,35], where they are defined simply as “executable code”.

Connections Connections propagate values between reactors’ ports. Notably,
connections can only be established between nested reactors which live in the
same parent reactor. We don’t formalize connections directly, but instead take
the same approach as [35] and replace them with the notion of a relay reaction
as demonstrated in Figure 3. A relay reaction is a reaction whose sole purpose
is to propagate a value from one port to another.

⇝

Fig. 3. Example of replacing connections by relay reactions.

Definition 4 (Relay Reaction). Let r be a reactor with nested reactors r1
and r2 and c be a connection from output port o of r1 to input port i of r2. A
reaction n is a relay reaction for c, if:

– n is directly contained in r.
– sources(n) = triggers(n) = {(out, o)} and effects(n) = {(inp, i)}.
– body(n) writes the value of (out, o) to (inp, i).
– priority(n) is incomparable to the priorities of all other reactions in r.

The last requirement is crucial. As a connection propagates its values im-
mediately, a corresponding relay reaction must be able to propagate its value
at any time, as well. As a result, it must have a priority which allows it to ex-
ecute independently of any other reaction in the same reactor.13 In [35] this is
achieved by defining a special priority which is only available to reactions for
which it is known that they do not touch the reactor’s state. This restriction is
required as they define reactions in such a way that all state variables of their
parent reactor are implicitly part of their sources and effects, and therefore all
(normal) reactions in a reactor need to be totally ordered by their priority to
retain determinism. In our formalization, this edge case is avoided by making
13 This also implies that connections are only truly reducible to relay reactions if the

Priority type has an incomparable element.



state variables explicit dependencies of reactions and defining rules for the or-
dering of reactions’ priorities (Definition 8). Thus, relay reactions can be defined
without requiring special considerations.

2.2 Hierarchical Reactors

Recall that nested reactors allow us to declare an entire system of reactors hierar-
chically, as a single root reactor that contains a tree of nested reactors. To reason
formally about nested reactors and the resulting hierarchical structure, basic re-
actors are insufficient, as their get? function does not impose any structure on
the components of reactors. For example, in basic reactors multiple components
can share the same identifier, and the graph of reactors induced by nesting can
form any directed graph.14 As we intend to use identifiers to uniquely refer to
components, we next constrain identifiers to be unique – this also forces the re-
actor graph to form a tree structure. We achieve this by forcing all components
contained (arbitrarily deeply nested) in a reactor to be accessible by a unique
path from the root reactor. A path from a reactor to an identified component
is called a membership witness. Figure 4 shows how each step in a membership
witness is a proof that we can get from one reactor to the next by direct nesting,
ending in a proof that the desired identified component is contained in the final
reactor.

Helicopter
ColorCamera

Timer
signal : Port o

get?(Helicopter, rtr, j1)
= ColorCamera get?(ColorCamera, rtr, j2)

= Timer get?(Timer, out,signal)
= o

Fig. 4. Membership witness of the output port identified as signal for the Helicopter
root reactor.

Definition 5 (Member). Formally, we define membership witnesses over a
reactor type α inductively [17] as follows:

inductive Member (cpt : Component) (i : ID) : α → Type
| final : get? r cpt i = some o → Member cpt i r
| nested : get? r₁ .rtr j = some r₂ → Member cpt i r₂ →

Member cpt i r₁

In this Lean snippet, we assume that α is a basic reactor type, and we
define a Member inductively as a function of a component kind cpt, an identifier
14 For example, we can construct a self loop by letting get?(r, rtr, i) = r.



i and a reactor of type α. This inductive definition has two cases. The final
(base) case has as condition that get?(r, cpt, i) is defined. The nested (inductive)
case requires that the (root) reactor r1 directly contains a nested reactor r2 for
which we already have a membership witness of i of kind cpt. To construct
a membership witness, we provide proofs of these conditions as arguments to
the constructors, which are just functions by the principle of Propositions as
Types [56,45]. By the same principle, a membership witness of i of kind cpt in r
is then a term of type Member(cpt, i, r).15

Definition 6 (Hierarchical Reactors). A Hierarchical reactor type is then a
(basic) Reactor type where there exists at most one membership witness for any
given identified component:

class Hierarchical (α) extends Reactor α where
unique_ids : ∀ r cpt i (m₁ m₂ : Member cpt i r), m₁ = m₂

While hierarchical reactors impose structure on reactors, we yet need to define
tools to aid formal reasoning over them. When defining properties over reactors,
it is common to refer to components which are located somewhere in the tree of
a given root reactor, but not necessarily in the same parent reactor. For example
in Section 2.3 we define that “no two distinct reactions share an input port as
effect.” This requires us to be able to refer to any two reactions in the reactor
tree. The get? function is ill-suited for this purpose, as its notion of containment
is flat. That is, it only considers components directly nested in the reactor on
which it is called.

Hierarchical reactors give us a natural way of extending the get? function
such that we can refer to components anywhere in a reactor tree. For this, we
first define the object of a membership witness to be the value of its identified
component. For example if we have a membership witness m : Member(inp, i, r)
and the input port identified by i has the value 5, then we define object(m) = 5.
We then define the partial function obj? which extends get? to work on an entire
reactor tree:

Definition 7 (Extended Accessor).

obj? : α → (cpt : Component) → ID → Option(cptType(cpt, α))

obj?(r, cpt, i) :=
{

object(m) if m : Member(cpt, i, r) exists
none if no membership witness exists

Thus, for example, obj?(r, inp, i) = 5 means that somewhere in the tree of
root reactor r there exists an input port identified by i with value 5. Note that
this function is not computable in general, as we cannot decide the existence
15 We note that Member lives in Type, not in Prop as we need to be able to distinguish

different paths to the same identified component. If Member were a Prop, those paths
would all be considered equal by proof irrelevance.



of a membership witness for an arbitrary hierarchical reactor type. For reactors
containing only finitely many components it is easily computable, though.16

Hierarchical reactors are already vastly more useful than basic reactors in
that they allow us to define many useful properties of reactors – often by using
the extended accessor. For example, the entire execution model is defined over
hierarchical reactors. To actually prove properties like progress and determinism,
we need to add additional constraints provided in the following section. It is
worth noting that formal treatment of identifier uniqueness, accessor functions
and the distinction between properties needed for definitions as opposed to proofs
are glossed over in the previous formal literature about the Reactor model [36,35].

2.3 Proper Reactors

The class of proper reactors adds all the axioms which are necessary to ensure
that the execution of reactors can be defined in a way that results in deterministic
behavior.

Definition 8 (Proper Reactors). A Proper reactor type is a hierarchical re-
actor type with the following additional properties:17

(1) Unique Inputs No two distinct reactions share an input port as effect.

(2) Ordered Priorities The priorities of any two distinct reactions in the same
reactor are totally ordered if one of the following holds:

– The reactions share an effect.
– The reactions share a state variable as dependency which is an effect for at

least one of them.

(3) Valid Dependencies Reactions only declare valid sources and effects. For a
reaction n contained directly in a reactor r, validity is defined as follows:

– Input ports of r are valid sources for n.
– Output ports of r are valid effects for n.
– State variables of r are valid sources and effects for n.
– Actions and state variables of r are valid sources and effects for n.
– Input ports of reactors directly nested in r are valid effects for n.
– Output ports of reactors directly nested in r are valid sources for n.

Notably, the ordering of priorities is not explicitly considered in [36,35] and
the restrictions on state variables are new, as we now treat them as explicit
dependencies.
16 For example, by a simple tree traversal on the finite reactor tree.
17 This is a simplification. See Section 2.4 for the full picture.



2.4 The Complete Type Class Hierarchy
The previous section omits some details of proper reactors. Namely, the class
of proper reactors extends hierarchical reactors, as well as three others. These
additional classes impose constraints which are not necessarily characteristic of
reactors but are used for proving progress and determinism. In Figure 5 we show
the full hierarchy of classes followed by brief explanations of each class.

(Basic) Reactor

ExtensionalHierarchical Well-Founded Updatable

Finite
Lawfully

Updatable
Proper

Fig. 5. Complete hierarchy of type classes used to formalize reactors.

Extensional Reactors A reactor type is called extensional if its reactors are
completely characterized by their components:

∀ r1, r2 : (r1 = r2) ↔ (∀ cpt, i : get?(r1, cpt, i) = get?(r2, cpt, i))

Well-Founded Reactors A reactor type is called well-founded if the direct nesting
relation ∃ i : get?(r2, rtr, i) = r1 over r1 and r2 is well-founded [23,43]. That is,
there are no infinitely deeply nested reactors.18 This allows us to perform well-
founded induction on reactors.

(Lawfully) Updatable Reactors A reactor type α is called updatable if it has a
function update : α → ValuedComponent → ID → Value → α. It is called lawfully
updatable if this function satisfies the intuitive notion of setting a given identified
component to a given value.

Finite Reactors A hierarchical reactor type is called finite if each reactor contains
only finitely many components. That is, the set { i | ∃ o : obj?(r, cpt, i) = o } is
finite for all r and cpt.

We have thus defined reactors in a modular way, with the different properties
shown in Figure 5. Overall, defining reactors this way serves two purposes. First,
it formalizes implicit assumptions, like the uniqueness of identifiers or the proper
ordering of reaction priorities. And second, it factors properties of reactors in a
way that allows us to distinguish the necessary assumptions for main properties,
like progress and determinism, as we will see in Section 4.
18 A well-founded reactor can still contain infinitely many nested reactors by having

an infinite branching factor.



3 Operational Semantics

Having defined reactors, we define their execution in this section by using opera-
tional semantics. We first consider the notions of time and dependencies, which
are central to the Reactor model. We distinguish between physical (wall-clock)
time and logical time [27,21,33]. Logical time is measured in terms of superdense-
time tags, which consist of a time value and a microstep [39,34,5]. Execution of
reactions (including writing to ports) and propagation of values via connections
are considered “logically instantaneous”, that is, they don’t advance logical time.
Thus, it is possible and typical for multiple reactions to execute at the same log-
ical time. In this case, it is critical to determine an order for executing these
reactions, which ensures that each reaction’s dependencies have already finished
executing before it itself executes. For this purpose, we define a dependency
relation between reactions, based on their sources, effects and priorities:

Definition 9 (Dependency Relation). A reaction n1 is a dependency of a
reaction n2 in reactor r, written n1 <r n2, if one of the following holds:

1. n1 and n2 live in the same reactor and priority(n1) > priority(n2).
2. There exist i and a cpt ̸= stv, such that (cpt, i) ∈ effects(n1)∩ sources(n2).19

3. There exists a reaction n with n1 <r n and n <r n2. That is, <r is transitive.

While reactions execute at a single instant in logical time, for the model to
be useful, they also need to be able to communicate across logical time. Thus,
we introduce logical actions, which allow reactions to schedule communication
of values at specific logical time points in the future. Actions are similar to ports
in that they carry values and can be read and written to by reactions, but differ
from them in that they hold a given value at a specified future logical time.
Thus, logical actions are the means by which future events are scheduled from
within a reactor. Events can also be created asynchronously by the environment
through physical actions. Such actions are not scheduled by reactions, but instead
initiated by external components like sensors. Aside from how their events are
created, physical actions and logical actions are handled equally in the model.
The tags of events that originate from physical actions are inputs to the system.
Hence, we do not need to model them as part of the semantics to conclude that
the behavior triggered by such inputs is deterministic. For the sake of simplicity,
we therefore do not include physical actions in our semantics.

Having understood the notions of time and dependencies, we can define exe-
cution as a relation that determines how to construct valid sequences of execution
states. An execution state is a structure which adds context to a reactor for the
purpose of managing its execution. More precisely:

Definition 10 (Execution State). An execution state over a hierarchical re-
actor type α is a structure of the following form:
19 When i is a state variable we get a dependency by combining Property 2 of proper

reactors with Case 1 of <r.



structure State (α) where
rtr : α
tag : Tag
progress : Set ID
events : ID → Tag → Option Value

The rtr is the root reactor of the reactor system we want to execute. The
tag holds the current logical time tag of the execution, where Tag is the type of
logical time tags. The progress set indicates which reactions have already been
processed at the current tag, while the events map keeps track of which action
has which value at any given tag.

Definition 11 (Execution Relation). The operational semantics of reactor
execution are then given by the execution relation ↓∗ over execution states. It
is the reflexive, transitive closure of the execution step relation ↓ as shown in
Figure 6.

s ↓∗ s

s1 ↓ s2 s2 ↓∗ s3
s1 ↓∗ s3

Allows(s, n) ¬Triggers(s, n)
s ↓ record(s, n) skip-step

Allows(s, n) Triggers(s, n) s−[output(s, n)]→ s′

s ↓ record(s′, n)
exec-step

Closed(s) NextTag(s, g) Refresh(rtr(s), r, actions(s, g))
s ↓ ⟨r, g, ∅, events(s)⟩

time-step

Fig. 6. Operational semantics of reactor execution.

The skip-step and exec-step rules formalize how to process a single reaction.
As they occur logically instantaneously, we collectively call them “instantaneous
steps”. In both cases, the reaction needs to be “allowed” to be processed, which
is the case if all of n’s dependencies have been processed, but n itself has not
yet been processed. More formally:

Definition 12 (Allows Relation). An execution state s allows a reaction n
to be processed, written Allows(s, n), if {n′ | n′ <rtr(s) n } ⊆ progress(s) and
n ̸∈ progress(s).

The choice of instantaneous step then depends on whether the reaction is
currently triggered.

Definition 13 (Triggering Relation). A reaction n is triggered at a given
execution state s, written Triggers(s, n), if at least one of n’s triggers is present.
That is, ∃ (cpt, i) ∈ triggers(n) : obj?(rtr(s), cpt, i) ̸= absent.



If a reaction n is not triggered, skip-step applies, which records n as being
processed without executing it. That is, the execution state remains unchanged
except for its progress which becomes progress(s)∪{n}. If on the other hand n is
triggered, exec-step applies, which executes the reaction and applies its resulting
changes to the current execution state. The latter is formalized by the “update
relation” s−[...]→ s′, which is satisfied if s and s′ are equal up to applying a
given list of changes. For the sake of brevity, we omit the details of this relation,
but note that its definition is complicated by the Frame Problem [11]. That is,
most of the difficulty in defining this relation arises from having to define what
does not change when applying a change.

The given definitions of skip-step and exec-step give rise to nondeterministic
choice in the semantics: at a given execution state, there may be multiple reac-
tions which satisfy the conditions of either of these rules. The choice of which
reaction to process next is then nondeterministic, which models the concurrency
in the system. The fact that this degree of nondeterminism does not affect the
resulting execution state at each time step is a key result of our semantics (see
Section 4.2). Once all reactions have been processed at the current time tag, we
call an execution state closed. A time-step can then occur, if there exists some
future tag at which an event is scheduled:

Definition 14 (Next-Tag Relation). A tag g is the next tag of an execution
state s, written NextTag(s, g), if it is the smallest tag satisfying tag(s) < g and
∃ i : events(s)(i, g) ̸= none.

Performing a time-step on s consists of advancing tag(s) to the next tag,
setting progress(s) := ∅, clearing the values of all ports and setting the values of
all actions to the values given by events(s) for the new tag. The last two steps
are handled by the Refresh relation.

Definition 15 (Refresh Relation). A hierarchical reactor r1 refreshes to r2
with action values v : ID → Option(Value), written Refresh(r1, r2, v), if:

– Inputs are cleared: ∀ i : obj?(r1, inp, i) ̸= none → obj?(r2, inp, i) = absent
– Outputs are cleared: ∀ i : obj?(r1, out, i) ̸= none → obj?(r2, out, i) = absent
– Action values are set: obj?(r2, act) = v

– State variables are preserved: obj?(r2, stv) = obj?(r1, stv)
– r1 and r2 are structurally equivalent. Intuitively, this means they contain

the same components arranged equally and differ only by their values. The
precise definition is rather technical and is therefore omitted here.20

4 Progress and Determinism

One of the major claims of the Reactor model is that, despite a certain degree of
nondeterministic choice, its execution model is deterministic. In this section, we
substantiate this claim and prove the following theorems over proper reactors:
20 Cf. Reactor.Equivalent in the mechanization.

https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Objects/Reactor/Theorems/Basic.lean#L41


Progress There exists an execution step from any non-terminal execution state
if and only if its reactor’s dependency graph is acyclic.

Determinism All executions of a proper reactor up to the same point result in
the same state. That is, the nondeterministic order of execution steps does not
affect an execution’s outcome.

We provide proof sketches for these theorems here; the full proofs can be
found in our mechanization. The appendix lists the names of theorems and
lemmas as they can be found in the mechanization.

4.1 Progress

In the literature surrounding the Reactor model, the definition of reactors usually
includes the assumption that their dependency graphs are acyclic [36,35].21 Yet,
our formalization does not require this. In this section, we show that an acyclic
dependency graph is only necessary to ensure that execution of a reactor can
make progress. In fact, acyclicity of the dependency graph characterizes the
ability to make progress. To prove this theorem, we first formalize its statement.

Definition 16 (Progress Property). We say that a reactor r can make progress,
that is, has the progress property, if for all non-terminal execution states s start-
ing at r there exists a state s′ such that s ↓ s′.

Definition 17 (Terminal State). An execution state s is terminal if progress(s)
contains all reactions of rtr(s) and there are no events scheduled after tag(s).

Definition 18 (Dependency Graph). The dependency graph of a reactor r
is the directed graph of reactions of r, where there is an edge between reactions
n1 and n2 if and only if n1 <r n2. As the dependency relation is transitive, the
dependency graph of r is acyclic if and only if the relation <r is irreflexive.

Theorem 1 (Progress Theorem). For all finite proper reactors r, r has the
progress property if and only if it has an acyclic dependency graph.

Proof Sketch. We prove both directions independently.
To prove the forward direction we need to show that for any reaction n, n

does not depend on itself (n ̸<r n). We achieve this by constructing a special non-
terminal state s over r whose progress contains all reactions except n. Assuming
the progress property for r, we obtain that there exists an execution step starting
from s, which by construction of s must be a skip-step or exec-step of n. In either
case, Allows(s, n) must hold, from which one can easily prove that n does not
depend on itself.22

The backward direction is shown by explicitly constructing an execution step
for a given non-terminal state s over reactor r. If s has no unprocessed reactions
21 This is typically called an “absence of algebraic loops”.
22 The proof of this direction works generally for hierarchical reactors.



for the current tag, we can easily construct a time-step. Otherwise, we can show
by induction on the set of unprocessed reactions that there must exist a reaction
which is itself unprocessed, yet has only dependencies which are processed. This
proof step works only because r’s dependency graph is acyclic. Depending on
whether the obtained reaction is triggered or not, we can construct either a
skip-step or exec-step for it.

4.2 Determinism

To formally state the theorem of determinism, we need to formalize the notion
of “executions up to the same point”. If we have executions s ↓∗ s1 and s ↓∗ s2,
it is not sufficient to have only tag(s1) = tag(s2). We also need to ensure that s1
and s2 have executed the same reactions within their current tag, that is, have
the same progress:

Theorem 2 (Determinism). For all execution states s, s1, s2 over proper
reactors, we have:

s ↓∗ s1 → s ↓∗ s2 → tag(s1) = tag(s2) → progress(s1) = progress(s2) → s1 = s2

Proof Sketch. The proof of this theorem can be divided into two main parts.
First, we show that sequences of execution steps must always be structured as
alternations of two kinds of subsequences as shown in Figure 7: (1) a sequence
of instantaneous steps covering all reactions and (2) a single time step.

s1 ... sn s(n+1) ... s(2n+1) s(2n+2)

instantaneous
steps

instantaneous
steps

time
step

time
step

Fig. 7. Structure of executions as alternations of instantaneous steps and time steps.

This can be proven solely based on the structure of the execution rules and
does not require the specific properties of proper reactors. Time steps can rather
easily be proven deterministic, so what remains to be shown is that subsequences
of instantaneous steps (denoted ↓i+) are deterministic:

Lemma 1 (Instantaneous Determinism). For all execution states s, s1, s2
over proper reactors, we have:

s ↓i+ s1 → s ↓i+ s2 → progress(s1) = progress(s2) → s1 = s2

This lemma lies at the heart of the proof of determinism. It is shown by
induction using the following lemma, which establishes that if a reaction does not
depend on another reaction, executing it first preserves the result of execution:



Lemma 2 (Independent Reaction Swap). For all instantaneous execution
steps e1 : s1 ↓i s2 and e2 : s2 ↓i s3 with rcn(e1) ̸<rtr(s1) rcn(e2), we can con-
struct an execution state s′2 and instantaneous execution steps e′1 : s1 ↓i s′2 and
e′2 : s′2 ↓i s3 such that rcn(e′1) = rcn(e2) and rcn(e′2) = rcn(e1).

We write rcn(e) to denote the reaction processed by instantaneous execution
step e. As the statement of the lemma shows, we explicitly construct the swapped
execution steps. As part of this construction we need to explicitly construct the
new intermediate reactor rtr(s′2), which is why we need proper reactors to be
lawfully updatable. Furthermore, the proof of this lemma builds on many small
technical lemmas about independent reactions, which is where the properties
of proper reactors are required. For example, they allow us to establish that
independent reactions can never write to the same component.

Corollary 1. An immediate consequence of the theorem of determinism is that
executions “synchronize” at every time step. That is, if we compare multiple
executions we get a diamond structure as shown in Figure 8. It is an open
problem to define execution in such a way that reordering of execution steps can
transcend time barriers while retaining determinism.

s1 s′2

s2

s′′2

...

...

...

s′n−1

sn−1

s′′n−1

sn sn+1 s′n+2

sn+2

s′′n+2

...

...

...

time
step

Fig. 8. Synchronization behavior of executions as a result of determinism.

5 Related Work

Concurrency is a central concept in computing in general, and consequently,
there are many other well-studied models for describing and understanding con-
currency. Petri nets are a staple formal model used for concurrency [44]. They
are one of the most general models, specifying little in the way of structure.
On the algebraic side, a family of models called Process Algebras [9] gives alge-
braic (equational) semantics to concurrent systems. These are particularly useful
to build up the semantics compositionally, for example by introducing parallel
or synchronous composition operators and specifying how the compound sys-
tem behaves. Other models have also been put forward, like those based on
game semantics [1] which all strive to the a high level of generality, allowing
many behaviors that are undesirable in CPS and impossible in reactors. Kahn
semantics [25], on the other hand, provide a topological view of deterministic
concurrency based on Scott-continuous functions [53]. These models all enable
modeling of concurrency, but not necessarily reasoning about time semantics.



Reactors mix concepts from several of these existing models, including ac-
tors [15], synchronous languages [50], dataflow [24], and discrete event sys-
tems [52]. They do so to enable deterministic, concurrent semantics with an
explicit notion of time. Indeed, the Reactor model can also be characterized as
a Sparse Synchronous Model [20] and a generalization of the Logical Execution
Time (LET) paradigm [33], which has gained a lot of traction in industry.

Of particular interest here are synchronous languages, which are commonly
used to program CPS. This includes Signal [7], Lustre [47] and commercial vari-
ants like SCADE or (a subset of) Simulink. These languages implement the
synchronous/reactive model of computation, which can be seen as a subset of
the discrete event semantics that are the basis of the Reactor model [51]. In gen-
eral, synchronous languages like Lustre or Signal are more fine-grained than the
Reactor model and have more restrictive semantics for the computational nodes.
They also have a simpler model of time: discrete time, with an assumption of uni-
formity, as opposed to the superdense time model with an explicit distinction of
logical and physical time in the Reactor model. Lustre, for example, forbids the
use of unbounded loops and recursive functions. This is done to ensure a realistic
synchrony with short response times. Signal similarly assumes an instantaneous
execution of the digital logic in the system as well as the communication with
the environment. This is in contrast to LF and the Reactor model, which mod-
els the execution times of reactions explicitly and allows arbitrary computation
through potentially dynamic execution times.

The synchronous languages Lustre [8], Signal [7] and Esterel [10] were all
defined with a specified semantics. Lustre’s denotational semantics are in the
Kahn style [25], which is the same style as the original reactor semantics [36],
combined with an ultrametric space to model superdense time [14]. The denota-
tional semantics of Signal are also based on Kahn Networks, but with extensions
for their relational nature [6]. Interestingly, as in this paper, both Lustre and
Signal also define operational semantics to be closer to the compiler implemen-
tation [47,7], even after having had denotational semantics before. Esterel was
first given operational semantics in this style [10].

The operational semantics of Lustre are also mechanized in Coq for the Velus
compiler [12]. A key difference is that these semantics (coinductively) reason
about entire streams of execution at once, whereas our semantics reason about
individual events in a stream. Moreover, Lustre and Signal are concrete lan-
guages, whereas the Reactor model is a more abstract model of computation; we
formalize neither the concrete LF syntax nor its compiler.

6 Conclusion

LF and its underlying Reactor model enable constructing concurrent yet de-
terministic software for CPS. They provide primitives for concurrent processes,
while enforcing structure through explicit dependencies and time semantics. We
provide a rigorous formalization of the semantics in Lean and use it to deliver
mechanized proofs of determinism and progress. Our proof of determinism shows



that the parallelism exposed by LF is safe, and our proof of progress provides
a clear explanation as to why LF can only accept programs without causality
loops. The operational semantics that we provide is simple and intuitive.

We envision that our work may prove useful for the construction of verified
compilers and runtime implementations. This could enable verification of CPS
software with a small trusted computing base (TCB) through Lean. Our formal-
ization could also serve as tool for prototyping possible extensions of the core
Reactor model and evaluating their consequences. An example of this would
be developing a model of mutations, which are reactions that can change the
structure of a reactor. The current mechanization already includes mutations as
components, but ignores them in the execution model, as they require a signifi-
cant reconsideration of the proof of determinism.

Acknowledgments

We thank the anonymous reviewers for their feedback which greatly improved
the clarity of the manuscript. This work was funded in part by the Engineer-
ing and Physical Sciences Research Council (EPSRC), through grant reference
EP/V038699/1, as well as the German Federal Ministry of Education and Re-
search (BMBF) as part of the Software Campus (01IS12051) and the program
“Souverän. Digital. Vernetzt.”, joint project 6G-life (16KISK001K). This work
was also supported in part by the National Science Foundation (NSF), awards
#CNS-1836601 (Reconciling Safety with the Internet) and #CNS-2233769 (Con-
sistency vs. Availability in Cyber-Physical Systems) and the iCyPhy Research
Center (Indus- trial Cyber-Physical Systems), supported by Denso, Siemens, and
Toyota.

References
1. Abramsky, S., McCusker, G.: Game semantics. In: Computational Logic: Proceed-

ings of the NATO Advanced Study Institute on Computational Logic, held in
Marktoberdorf, Germany, July 29–August 10, 1997, pp. 1–55. Springer (1999)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical computer science 138(1), 3–34 (1995)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical computer science
126(2), 183–235 (1994)

4. Baheti, R., Gill, H.: Cyber-physical systems. The impact of control technology
12(1), 161–166 (2011)

5. Bai, Y.: Desynchronization: From macro-step to micro-step. In: 2018 16th
ACM/IEEE International Conference on Formal Methods and Models for System
Design (MEMOCODE). pp. 1–10. IEEE (2018)

6. Benveniste, A., Le Guernic, P.: A denotational theory of synchronous communi-
cating systems (1987)

7. Benveniste, A., Le Guernic, P., Jacquemot, C.: Synchronous programming with
events and relations: the signal language and its semantics. Science of computer
programming 16(2), 103–149 (1991)

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/V038699/1


8. Bergerand, J.L.: LUSTRE: un langage déclaratif pour le temps réel. Ph.D. thesis,
Institut National Polytechnique de Grenoble-INPG (1986)

9. Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of process algebra. Elsevier
(2001)

10. Berry, G., Cosserat, L.: The esterel programming language and its mathematical
semantics. INRIA Res. Rep (327) (1984)

11. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure spec-
ifications. IEEE Transactions on Software Engineering 21(10), 785–798 (1995).
https://doi.org/10.1109/32.469460

12. Bourke, T., Brun, L., Dagand, P.É., Leroy, X., Pouzet, M., Rieg, L.: A formally
verified compiler for lustre. In: Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 586–601 (2017)

13. Carneiro, M.: The type theory of lean (2019)
14. Cataldo, A., Lee, E., Liu, X., Matsikoudis, E., Zheng, H.: A constructive fixed-point

theorem and the feedback semantics of timed systems. In: 2006 8th International
Workshop on Discrete Event Systems. pp. 27–32. IEEE (2006)

15. Clinger, W.D.: Foundations of actor semantics. AITR-633 (1981)
16. Coquand, T., Huet, G.: The calculus of constructions. Information And Computa-

tion 76(2-3) (1988)
17. Coquand, T., Paulin, C.: Inductively defined types. In: International Conference

on Computer Logic. pp. 50–66. Springer (1988)
18. Cremona, F., Lohstroh, M., Broman, D., Lee, E.A., Masin, M., Tripakis, S.: Hybrid

co-simulation: it’s about time. Software & Systems Modeling 18, 1655–1679 (2019)
19. Edwards, S.A.: On determinism. Principles of Modeling: Essays Dedicated to Ed-

ward A. Lee on the Occasion of His 60th Birthday pp. 240–253 (2018)
20. Edwards, S.A., Hui, J.: The sparse synchronous model. In: 2020 Forum for Speci-

fication and Design Languages (FDL). pp. 1–8. IEEE (2020)
21. Ernst, R., Kuntz, S., Quinton, S., Simons, M.: The logical execution time paradigm:

New perspectives for multicore systems (dagstuhl seminar 18092). In: Dagstuhl
Reports. vol. 8. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

22. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings 11th Annual
IEEE Symposium on Logic in Computer Science. pp. 278–292. IEEE (1996)

23. Hrbacek, K., Jech, T.: Introduction to set theory, revised and expanded. Crc Press
(2017)

24. Jagannathan, R.: Dataflow models. Parallel and Distributed Computing Handbook
pp. 223–238 (1995)

25. Kahn, G.: The semantics of a simple language for parallel programming.
In: IFIP Congress (1974), https://api.semanticscholar.org/CorpusID:
18030506

26. Kammar, O., Lindley, S., Oury, N.: Handlers in action. ACM SIGPLAN Notices
48(9), 145–158 (2013)

27. Kirsch, C.M., Sokolova, A.: The logical execution time paradigm. Advances in
Real-Time Systems pp. 103–120 (2012)

28. Lamport, L.: How to write a 21st century proof. Journal of Fixed Point Theory and
Applications 11(1), 43–63 (Mar 2012). https://doi.org/10.1007/s11784-012-0071-6,
http://link.springer.com/10.1007/s11784-012-0071-6

29. Lee, E., Messerschmitt, D.: Synchronous data flow. Proceedings of the IEEE 75(9),
1235–1245 (1987). https://doi.org/10.1109/PROC.1987.13876

30. Lee, E.A.: The past, present and future of cyber-physical systems: A focus on
models. Sensors 15(3), 4837–4869 (2015)

https://doi.org/10.1109/32.469460
https://api.semanticscholar.org/CorpusID:18030506
https://api.semanticscholar.org/CorpusID:18030506
https://doi.org/10.1007/s11784-012-0071-6
http://link.springer.com/10.1007/s11784-012-0071-6
https://doi.org/10.1109/PROC.1987.13876


31. Lee, E.A.: Determinism. ACM Transactions on Embedded Computing Systems
(TECS) 20(5), 1–34 (2021)

32. Lee, E.A., Lohstroh, M.: Time for all programs, not just real-time programs. In:
Leveraging Applications of Formal Methods, Verification and Validation: 10th In-
ternational Symposium on Leveraging Applications of Formal Methods, ISoLA
2021, Rhodes, Greece, October 17–29, 2021, Proceedings 10. pp. 213–232. Springer
(2021)

33. Lee, E.A., Lohstroh, M.: Generalizing logical execution time. In: Principles of Sys-
tems Design. vol. LNCS 13660 (July 2023)

34. Lee, E.A., Zheng, H.: Operational semantics of hybrid systems. In: International
Workshop on Hybrid Systems: Computation and Control. pp. 25–53. Springer
(2005)

35. Lohstroh, M.: Reactors: A Deterministic Model of Concurrent Computation for
Reactive Systems (2020). https://doi.org/10.13140/RG.2.2.30520.78083, https:
//www.researchgate.net/publication/348155409

36. Lohstroh, M., Iñigó Romeo, I., Goens, A., Derler, P., Castrillon, J., Lee, E.A.,
Sangiovanni-Vincentelli, A.: Reactors: A Deterministic Model for Composable Re-
active Systems (2020)

37. Lohstroh, M., Menard, C., Bateni, S., Lee, E.A.: Toward a lingua franca for deter-
ministic concurrent systems. ACM Transactions on Embedded Computing Systems
(TECS) 20(4), 1–27 (2021)

38. Lohstroh, M., Schoeberl, M., Goens, A., Wasicek, A., Gill, C., Sirjani, M., Lee,
E.A.: Actors revisited for time-critical systems. In: Proceedings of the 56th Annual
Design Automation Conference 2019. pp. 1–4 (2019)

39. Maler, O., Manna, Z., Pnueli, A.: Prom timed to hybrid systems. In: Real-Time:
Theory in Practice: REX Workshop Mook, The Netherlands, June 3–7, 1991 Pro-
ceedings. pp. 447–484. Springer (1992)

40. Menard, C., Bateni, S., Donovan, P., Fournier, C., Lin, S., Suchert, F., Tan-
neberger, T., Kim, H., Castrillon, J., Lee, E.A.: High-performance deterministic
concurrency using lingua franca. arXiv preprint arXiv:2301.02444 (2023)

41. de Moura, L., Ullrich, S.: The lean 4 theorem prover and programming language.
In: Automated Deduction–CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, July 12–15, 2021, Proceedings 28. pp. 625–635. Springer
(2021)

42. Paulin-Mohring, C.: Introduction to the calculus of inductive constructions (2015)
43. Paulson, L.C.: Constructing recursion operators in intuitionistic type theory. Jour-

nal of Symbolic Computation 2(4), 325–355 (1986)
44. Peterson, J.L.: Petri nets. ACM Computing Surveys (CSUR) 9(3), 223–252 (1977)
45. Pierce, B.C.: Types and programming languages. MIT press (2002)
46. Pierce, B.C., Casinghino, C., Gaboardi, M., Greenberg, M., Hriţcu, C., Sjöberg,

V., Yorgey, B.: Software foundations. Webpage: http://www. cis. upenn.
edu/bcpierce/sf/current/index. html (2010)

47. Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language for program-
ming synchronous systems. In: Proceedings of the 14th Annual ACM Symposium
on Principles of Programming Languages (14th POPL 1987). ACM, New York,
NY. vol. 178, p. 188. Citeseer (1987)

48. Plotkin, G., Power, J.: Adequacy for algebraic effects. In: International Confer-
ence on Foundations of Software Science and Computation Structures. pp. 1–24.
Springer (2001)

49. Plotkin, G.D.: A structural approach to operational semantics. Aarhus university
(1981)

https://doi.org/10.13140/RG.2.2.30520.78083
https://www.researchgate.net/publication/348155409
https://www.researchgate.net/publication/348155409


50. Potop-Butucaru, D., De Simone, R., Talpin, J.P.: The synchronous hypothesis and
synchronous languages. The embedded systems handbook pp. 1–21 (2005)

51. Ptolemaeus, C.: System design, modeling, and simulation: using Ptolemy II, vol. 1.
Ptolemy. org Berkeley (2014)

52. Ramadge, P., Wonham, W.: The control of discrete event systems. Proceedings of
the IEEE 77(1), 81–98 (1989). https://doi.org/10.1109/5.21072

53. Scott, D.S.: Domains for denotational semantics. In: Automata, Languages and
Programming: Ninth Colloquium Aarhus, Denmark, July 12–16, 1982 9. pp. 577–
610. Springer (1982)

54. Sozeau, M., Oury, N.: First-class type classes. In: Theorem Proving in Higher Order
Logics: 21st International Conference, TPHOLs 2008, Montreal, Canada, August
18-21, 2008. Proceedings 21. pp. 278–293. Springer (2008)

55. Tabuada, P.: Verification and control of hybrid systems: a symbolic approach.
Springer Science & Business Media (2009)

56. Wadler, P.: Propositions as types. Communications of the ACM 58(12), 75–84
(2015)

57. Wadler, P.: Programming language foundations in Agda. In: Formal Methods:
Foundations and Applications: 21st Brazilian Symposium, SBMF 2018, Salvador,
Brazil, November 26–30, 2018, Proceedings 21. pp. 56–73. Springer (2018)

https://doi.org/10.1109/5.21072


A Definitions and Theorems in the Lean Mechanization

Definition 1: Objects/Reactor/Basic: Reactor

Definition 2: Objects/Reaction: Reaction

Definition 3: Objects/Change: Change.Normal

Definition 4: not required in the mechanization

Definition 5: Objects/Reactor/Basic: Reactor.StrictMember

Definition 6: Objects/Reactor/Hierarchical:
Reactor.Hierarchical

Definition 7: Objects/Reactor/Hierarchical:
Reactor.Hierarchical.obj?

Definition 8: Objects/Reactor/Proper: Reactor.Proper

Definition 9: Execution/Dependency: Dependency

Definition 10: Execution/State: Execution.State

Definition 11: Execution/Basic: Execution

Definition 12: Execution/State: Execution.State.Allows

Definition 13: Execution/State: Execution.State.Triggers

Definition 14: Execution/State: Execution.State.NextTag

Definition 15: Execution/Reactor: Reactor.Refresh

Definition 16: Execution/Theorems/Progress: Execution.Progress

Definition 17: Execution/State: Execution.State.Terminal

Definition 18: Execution/Dependency: Dependency

Theorem 1: Execution/Theorems/Progress:
Execution.Progress.iff_deps_acyclic

Theorem 2: Execution/Theorems/Execution:
Execution.deterministic

Lemma 1: Execution/Theorems/Grouped/Instantaneous:
Execution.Instantaneous.Step.TC.deterministic

Lemma 2: Execution/Theorems/Grouped/Instantaneous:
Execution.Instantaneous.Step.prepend_indep

https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Objects/Reactor/Basic.lean#L12
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Objects/Reaction.lean#L52
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Objects/Change.lean#L9
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Objects/Reactor/Basic.lean#L20
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Objects/Reactor/Hierarchical.lean#L11
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Objects/Reactor/Hierarchical.lean#L14
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Objects/Reactor/Proper.lean#L43
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/Dependency.lean#L14
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/State.lean#L11
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/Basic.lean#L52
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/State.lean#L49
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/State.lean#L54
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/State.lean#L57
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/Reactor.lean#L13
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/Theorems/Progress.lean#L10
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/State.lean#L68
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/Dependency.lean#L14
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/Theorems/Progress.lean#L36
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/Theorems/Execution.lean#L10
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/Theorems/Grouped/Instantaneous.lean#L354
https://github.com/lf-lang/reactor-model/blob/fe89750ba8d198844fa9ff1eca764a68eee1c05e/src/ReactorModel/Execution/Theorems/Grouped/Instantaneous.lean#L170

	Provable Determinism for Software in Cyber-Physical Systems

