Towards Pen-and-Paper-Style Equational Reasoning in
Interactive Theorem Provers by Equality Saturation

MARCUS ROSSEL", Barkhausen Institut, Germany and TU Darmstadt, Germany
RUDI SCHNEIDER, Technische Universitit Berlin, Germany

THOMAS KEHLER, ICube Lab - CNRS - Université de Strasbourg, France

MICHEL STEUWER, Technische Universitit Berlin, Germany

ANDRES GOE NS, University of Amsterdam, Netherlands and TU Darmstadt, Germany

Equations are ubiquitous in mathematical reasoning. Often, however, they only hold under certain conditions.
As these conditions are usually clear from context, mathematicians regularly omit them when performing
equational reasoning on paper. In contrast, interactive theorem provers pedantically insist on every detail
to be convinced that a theorem holds, hindering equational reasoning at the more abstract level of pen-and-
paper mathematics. In this paper, we address this issue by raising the level of equational reasoning to enable
pen-and-paper style in interactive theorem provers. We achieve this by interpreting theorems as conditional
rewrite rules, and use equality saturation to automatically derive equational proofs. Conditions that cannot be
automatically proven may be surfaced as proof obligations. Concretely, we present how to interpret theorems
as conditional rewrite rules for a significant class of theorems. Handling these theorems goes beyond simple
syntactic rewriting, and deals with aspects like propositional conditions and type classes. We evaluate our
approach by implementing it as a tactic in Lean, using the egg library for equality saturation with e-graphs.
We show four use cases demonstrating the efficacy of this higher level of abstraction for equational reasoning.

CCS Concepts: « Computing methodologies — Theorem proving algorithms; « Theory of computation
— Equational logic and rewriting; Automated reasoning.

Additional Key Words and Phrases: equality saturation, equational reasoning, e-graphs

ACM Reference Format:

Marcus Rossel, Rudi Schneider, Thomas Koehler, Michel Steuwer, and Andrés Goens. 2026. Towards Pen-and-
Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation. Proc. ACM Program.
Lang. 10, POPL, Article 25 (January 2026), 30 pages. https://doi.org/10.1145/3776667

1 Introduction

In popular culture, equations are synonymous with mathematical knowledge. Schrédinger’s and
Maxwell’s equations capture our knowledge of the universe. Fermat’s little theorem, vital for to-
day’s cryptography, describes an important equation in modular arithmetic. And his last theorem,
disproving an equation, defied mathematicians for centuries. Indeed, equational reasoning is one
of the fundamental tools of mathematics.

“Work done at Barkhausen Institut.

Authors’ Contact Information: Marcus Rossel, Barkhausen Institut, Dresden, Germany and TU Darmstadt, Darmstadt,
Germany, marcus.rossel@barkhauseninstitut.org; Rudi Schneider, Technische Universitiat Berlin, Berlin, Germany, r.
schneider@tu-berlin.de; Thomas Kecehler, ICube Lab - CNRS - Université de Strasbourg, Strasbourg, France, thomas.
koehler@cnrs.fr; Michel Steuwer, Technische Universitit Berlin, Berlin, Germany, michel.steuwer@tu-berlin.de; Andrés
Goens, University of Amsterdam, Amsterdam, Netherlands and TU Darmstadt, Darmstadt, Germany, a.goens@uva.nl.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART25

https://doi.org/10.1145/3776667

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

https://orcid.org/0009-0001-3567-6890
https://orcid.org/0009-0008-9151-773X
https://orcid.org/0000-0001-8461-8075
https://orcid.org/0000-0001-5048-0741
https://orcid.org/0000-0002-0409-1363
https://doi.org/10.1145/3776667
https://orcid.org/0009-0001-3567-6890
https://orcid.org/0009-0008-9151-773X
https://orcid.org/0000-0001-8461-8075
https://orcid.org/0000-0001-5048-0741
https://orcid.org/0000-0002-0409-1363
https://orcid.org/0000-0002-0409-1363
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776667
https://www.acm.org/publications/policies/artifact-review-and-badging-current

25:2 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

Translating intuitive mathematical reasoning to machine-checkable languages is one of the long-
standing goals of interactive theorem provers (ITPs) [Wiedijk 2006]. Arguably, it is the raison d’étre
of systems like Rocq [Rocq Dev Team 2025], Isabelle [Paulson 1993] or Lean [de Moura and Ullrich
2021]. Decades of research in ITPs has brought innovations that made it easier to express reasoning
steps, often by being closer to informal “pen-and-paper” mathematics. Among these innovations
is a long tradition of term rewriting techniques. From extensible simplification [Boyer and Moore
1973], to e-graphs [Detlefs et al. 2005], and proof-producing congruence closure [Nieuwenhuis
and Oliveras 2005; Selsam and de Moura 2016], rewriting is a critical tool in the ITP toolbox.

Term rewriting reflects equational reasoning by transforming mathematical equations into re-
write rules. The process of translating equations into rewrites typically involves identifying a class
of theorems that describes mathematical equations. These equational theorems are then translated
into rewrites rules by orienting the equation and converting universally-quantified variables into
(syntactic) pattern variables. This approach, however, is only sound when an equation holds un-
conditionally, which equations used in pen-and-paper proofs almost never do. For example, the
Pythagorean theorem a? + b? = c? requires the angle of the triangle formed by the three sides
a,b,c to be a right angle. Similarly, Fermat’s little theorem a”? = a (mod p) requires the expo-
nent and modulus p to be prime. When reasoning with such equations on paper, mathematicians
might silently check the conditions in their head. When a condition is not obvious, they might
annotate their reasoning with an explanation. While some conditions are explicitly stated in the-
orem statements, other conditions are often not. For example, the binomial theorem states that
(x+)" = Yiso (Z)xk 3" It would be easy to think of this as an equation that holds uncon-
ditionally, but it does not. It has several implicit conditions. For example, we assume that the
operations that appear in the equation are all defined for the set R that x and y belong to: addition,
multiplication, integer powers and integer coefficients like (Z) Even if we do not typically think
of it this way, these are preconditions for this equation to hold. Without them, we could not even
state the theorem! Additionally, we need these operations to satisfy certain properties: R needs to
be a commutative ring, which constrains its algebraic structure.

To reason with such theorems in the same intuitive style as with pen and paper, we need to con-
vince the I'TP that all conditions are satisfied. Unfortunately, as we demonstrate in Section 2, ITPs
at the moment require us to be explicit about both important preconditions and minor nuances
alike. This often makes proofs tedious to formalize and hinders understanding of existing proofs,
as the mathematical ideas are hidden among technicalities.

In this paper, we develop a novel approach to facilitate pen-and-paper-style equational reason-
ing in ITPs, based on a representation of theorems as conditional rewrite rules. We give an explicit
characterization of a class of suitable theorems, described in the ITP’s underlying logic: in our
case, Lean’s type theory [Carneiro 2019, 2024]. This involves a classification of preconditions, upon
which we build a translation into conditional rewrite rules used for automated term rewriting in
an e-graph. In Section 3, we give an overview of our approach and its integration as a tactic in
Lean, based on the rewriting engine egg. Our approach is enabled by the following contributions:

+ An encoding to translate theorems into conditional rewrite rules (Section 4), which are then
passed to an automated rewrite engine;

» a decoding justifying how theorems were instantiated and conditions were satisfied in the
automatically-found proof (Section 5);

« a set of extensions that further the usefulness of our approach, enabling it to prove more
theorems (Section 6).

We demonstrate our technique with multiple use cases in Section 7, showing that we enable the
desired pen-and-paper-style equational reasoning.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:3

1 calc
2 _=nl/7r-D'xm-r+nh+
3 n! /(! x (n-nr!) :=by
4 rw [cast_add, cast_div , cast_div , cast_mul,
5 cast_mul]
6 repeat’ rw [« Gamma_nat_eq_factorial]
7 rw [cast_sub (by omega), cast_add, cast_sub (by omega),
8 cast_one]
| 9 _=nl /7 r-D'x(n-nhH »
n n! 10 1/ (n-r+1)+1/r):=by
i MER el i ' 11 rw [Gamma_add_one , mul_comm (n - r + 1 : R),
‘~ Loy 12 < mul_assoc, div_mul_eq_div_mul_one_div,
(r'/’)‘y(h_ﬁuo" r‘(h r)‘ 13 < sub_add_cancel tr (1 : R), Gamma_add_one /]
fy 14 ring_nf
) nl A y 5 _=nl/r-D'x (-
i ORI (i 16 ((r+(n-r+1)/(*m-r+1))) :=by
ioa)l (i)l e C 17 rw [div_add_div _ _]
7 18 ring
19 _=nl/ r-D'xm-nx
@ nl
- i F+n =+ 20 A+ 1)/ (r*(n-r+1))) :=by
v R E AR RFIeT 77 o OUABIRBERAIL) T 21 ring
Co- (29! G 2 =+ DI/ x Fi = = by
i 23 rw [_root_.div_mul_div_comm, mul_comm,
(g) :) : ‘ 24 <« Gamma_add_one ., mul_assoc, mul_comm ((n - r : R)!),
b i i _,,/] 25 mul_assoc, <« mul_assoc, mul_comm ((r - 1 : R)!),
. Y A A et Al 26 sub_add, sub_self, sub_zero, « Gamma_add_one s
@ —4),’('\”‘)! : ,'-;(‘,7_,‘_,4) 27 < Gamma_add_one /]
i 28 ring_nf
CL;) 29 _ = _ :=by
30 rw [cast_div , cast_mul]

31 repeat’ rw [« Gamma_nat_eq_factoriall
32 rw [cast_add, cast_sub (by omega), cast_add, cast_one]

(b) A formalization in Lean using equational-reasoning style with
(a) Reasoning with pen on paper the calc tactic. The sub-proofs /2, to /1, are elided.

Fig. 1. Comparison of pen-and-paper-style equational reasoning and a direct translation into a Lean proof

2 Challenges of Pen-and-Paper-Style Reasoning in Current Interactive Theorem
Provers

Our goal is to enable a more informal, pen-and-paper style, equational reasoning in interactive
theorem provers. To understand the inherent challenges with reconstructing formal proofs from
this style, we discuss an example implemented in the Lean theorem prover. We will use it to identify
concrete technical challenges, which we will then address.

Our motivating example is the proof of the binomial theorem. This is a classical theorem that can
be found in many entry-level textbooks, such as [Rotman 2006]. To prove the binomial theorem:
G+ =30, (Z)xry”_r, Rotman first establishes the notation for binomial coefficients ('rl) and

proves the proposition that for all 0 < n and allr with0 < r < n, (rr’) = #lr), The proof for
the binomial theorem then follows from a corollary. We see the proof of the inductive step of this
theorem in Fig. 1.

On the left in Fig. 1a we see the reasoning from Rotman reproduced with pen on paper. As
typical for pen-and-paper proofs, the individual steps are not justified in detail. Instead, there is a
degree of “contextual knowledge” expected of the reader justifying the steps.

In contrast, on the right in Fig. 1b we see the reasoning in the Lean theorem prover. It is not
important to understand the details of this proof, which is a direct translation aiming to preserve
the same equational reasoning steps using Lean’s calc tactic, which enables the justification of
each proof step individually.! Every line from the pen-and-paper proof translates nicely to the lines

!Note that this is not the same proof as in the Lean mathematical library Mathlib [mat 2020], which is not written in
pen-and-paper style and uses other reasoning steps and tactics.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

25:4 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

highlighted in light blue (2-3, 9-10, 15-16, 19-20, and 22) in the calc proof. However, after each such
line in the proof, there are multiple additional lines of justifications. For this, we use mostly the rw
tactic that performs rewriting by replacing in the proof goal the left-hand-side of the referenced
equality definition by its right-hand-side. In addition, we use specialized tactics, such as ring in
line 21 that implements a decison procedure for commutative rings. For brevity, we elided about
15 lines of additional proofs for /1; to /1y, which justify preconditions of theorems. All this noise
makes the proof harder to read and understand, but also harder to write and construct.

A key difference between the pen-and-paper proof and the formalized proof is context: in the
informal proof, we know that we are dealing with numbers and can reason about them with the
rules we know are true of them. In the formal proof we have to be explicit about the types of our
terms and the theorems that we use. For instance, these informal “numbers” are natural numbers,
yet we see terms like %, which is not a natural number for r # 1. The informal proof silently uses
the fact that we can embed the naturals into the rationals (or reals), and, for example, assumes
that expressions with factorials remain in the natural numbers and are thus well-defined. In our
formalization, on the other hand, we have to be very explicit about this.? Ideally, for a direct trans-
lation of such a proof into an ITP, the prover should be able to infer, or at least ingest necessary
contextual knowledge, such that subsequent reasoning steps can be performed with little or no
further justification.

To understand the key technical challenges that need to be overcome to infer or expose the
needed contextual knowledge and to enable pen-and-paper-style equational reasoning in ITPs,
we inspect the equational reasoning in the binomial theorem in more detail.

Choosing a Suitable Automated Rewrite Technique. To justify the equality (1) from Fig. 1a we
break it down into multiple smaller steps:

n! + n! a _ nl 1 n n!
r—Dn-r+1)! ri(n—r) r—Dm-r+1)t ri(n—r)
a»_ n! 1 n n!) _ nl 1 n n!
r—-m-r+)n-r) rin-r) r-Nm-Nn-r+1) rin-r)

_ n! (1,1)
T r-Dm-\n—-r+1 r

Each step is justified by one equation, such as (1.3) by commutativity of multiplication. However,
commutativity and associativity are known to be notoriously tricky to automate in the context of
rewriting, as these equations are applicable in both directions, and it is often unclear which direc-
tion is beneficial. To overcome this challenge, we use a rewrite technique called equality saturation,
specifically the egg [Willsey et al. 2021] library, which is suited for rewriting with non-directed
equations. Equality saturation computes the congruence closure of a set of equations by growing
an equivalence graph (e-graph) that represents a growing set of equivalent terms. However, equal-
ity saturation is a purely syntax-driven approach and does not naturally capture the semantics of
Lean’s expression language. Therefore, we need to encode Lean expressions faithfully into terms
in an e-graph to be able to perform equational rewriting over them.

To capture the explicit reasoning steps of a pen-and-paper proof, we build on our prior work
Koehler et al. [2024] where we introduce guided equality saturation. This uses equational reasoning
steps as intermediate guides, helping the proof of each step using equality saturation. Our prior
paper shows how this technique is used to prove simple theorems. However, our prior approach
failed specifically on the example of the binomial theorem! This is, among other things, because
the proof relies on theorems that have preconditions.

2We define a macro to write n! for ['(n + 1), where T is a generalization of the factorial to real numbers.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:5

Syntactic Differences Despite Semantic Equality. Equality (1.1) follows by rewriting the left term

of the addition with the theorem -+ = £ . % In Lean, this theorem is written as:

bc b
theorem div_mul_eq_div_mul_one_div :
V a [i : DivisionCommMonoid o] (abc : a), a/ (bxc)=a/b=x(1/c)
Notably, this theorem is defined over all types & which have a DivisionCommMonoid type class
instance i. As a result, the left-hand side of the theorem: a / (b * ¢) and the target term:
n! / ((r = D! * (n - r + 1)) donot match syntactically when desugared. Specifically, they dif-
fer already when desugaring just the division, with

HDiv.hDiv ?a ?a ?a (instHDiv ?«a (DivInvMonoid. toDiv ?a
DivisionMonoid. toDivInvMonoid ?a (DivisionCommMonoid.toDivisionMonoid ?a ?i)))

being the left-hand side of the theorem, where variables preceded by ? represent holes which
can be filled by concrete terms. In contrast, the target desugars to:

HDiv.hDiv Real Real Real (instHDiv Real (DivInvMonoid.toDiv Real
Real.instDivInvMonoid))

These terms to not match syntactically on the final type class instance. As a result, the equality
saturation rewrite technique is not able to apply the theorem directly to solve step (1.1). This is
despite the theorem being applicable when semantically unifying the terms with the correct choice
of Aand i, where by semantic unification we mean Lean’s unification algorithm, which underlies its
notion of equality. A similar problem occurs when we define the theorem in terms of the function
Real.div instead of the / notation. In that case, the target term would again not match Real.div
syntactically, despite unifying semantically.

These examples indicate a larger problem of using syntactic rewriting on Lean expressions: the
syntax of terms is not sufficient to determine semantic equality of terms, and hence insufficient
to determine the applicability of theorems. Thus, it is necessary to increase syntactic uniformity
of semantically equal terms, and extend equality saturation such that it can perform syntactic
conversions between them. Capturing this notion of equality is however complicated by the fact
that it is not covered purely by syntactic rewrite rules.

Ensuring Preconditions of Theorems. In the previous paragraph, we described the problem of
theorems not being applied despite being applicable. The opposite problem, theorems wrongly
being applied when they should not, can occur when theorems with conditions are not handled
properly. This is relevant in (1.2), which relies on the following theorem:

theorem Gamma_add_one : V' s, (s # 0) > s! = s x Gamma s

Accordingly, rewriting s! to s * Gamma s, is only valid if s # 0. To ensure this condition, a syn-
tactic check is insufficient, as there can be syntactically distinct terms equivalent to 0. Instead, we
require a general representation of facts which can be checked during equality saturation. This
representation should also allow facts, such as s # 0, to be derivable during equality saturation
from equivalent facts, such ass + @ # 0. Yet, even then, it is not obvious to decide what even con-
stitutes a condition of a given theorem. For example, in the theorem div_mul_eq_div_mul_one_div
used in the previous paragraph, the type class argument i should be considered a condition, despite
appearing in the (desugared) theorem body.

In the following sections, we describe an approach tackling these challenges. Besides focusing
on how to handle conditional theorems and encoding them for equality saturation, we also describe
how we decode the information discovered during rewriting to instantiate the conditional theorems
in Lean. While we use Lean as an example throughout, and our implementation uses Lean, the ideas
should naturally transfer to similar systems like Rocq.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

25:6 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

VN egg

Encoding (4)
Encoding Lean Expressions (4.1)
Proof Goal >
T J Selecting Suitable Theorems (4.2) + Representation of Facts
Rewrite Rule Generation (4.3) Conditional
Theorems —’ - _ R
’Rewrite Rules + Definitional Equalit
j‘, ide arms (6 1) ’
Equality Saturation
Decoding (5)
Proof <= Explanation

Decoding E-Graph Terms (5.1)
Theorem Instantiation (5.2)
Proof Composition (5.3)

Fig. 2. Overview of our approach: Lean proof goals and theorems are encoded into terms and conditional
rewrite rules in the egg e-graph, which also encodes a representation of facts for reasoning with conditions.
After equality saturation, an explanation is produced, which is decoded into a proof. Extensions of the
core approach are shown in . The parenthesized numbers indicate the corresponding sections.

3 Overview

Our approach aims at enabling equational reasoning using pen-and-paper style, by automatically
leveraging contextual knowledge. To achieve this, we integrate the interactive theorem prover
Lean with egg, an efficient implementation of equality saturation, an automated rewriting tech-
nique performed over an e-graph. The e-graph data structure stores a congruence relation by stor-
ing syntactically different, but equivalent terms in the same unique equivalence class (e-class). The
set of equivalent terms is grown using equality saturation, which relies on e-matching to apply
rewrite rules directly on the e-graph. A major challenge for encoding Lean expressions into e-
graph terms is to ensure that expressions considered equal by Lean a priori are also treated as
equal during equality saturation. In Lean’s type theory, expressions can be considered definition-
ally equal, even if they are not syntactically equal [Carneiro 2019].% This conflicts with e-graphs’
syntactic view of equality.

Figure 2 shows an overview of our approach, which consists of three main steps.

» Encoding: A given proof goal and theorems are encoded as terms and conditional rewrite
rules and passed to the equality saturation engine egg. This is visualized by the arrows point-
ing to the right at the top in Fig. 2 and described in Section 4.

Equality Saturation: The e-graph is initialized with gadgets for a representation of facts
which enables reasoning with and about the conditions of rewrites. Rewriting is performed,
as visualized by the downwards pointing arrow. If successful, it produces an explanation
consisting of a sequence of rewrite applications.

Decoding: Finally, the explanation is decoded back into Lean’s expression language and
used to reconstruct a proof of the goal. This is visualized by the arrow pointing to the left
and described in Section 5.

3Well-known examples of definitional equality rules include - and 7-reduction.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:7

We discuss in Section 4.1 how we encode Lean expressions into e-graph terms. In Section 4.2
we discuss how we select suitable theorems for which we can construct sensible rewrite rules. In
Section 4.3 we show how these theorems are encoded as rewrite rules.

Once we have found a rewrite sequence using equality saturation, we decode it back into a
Lean proof. For this, we first decode e-graph terms back into Lean expressions, which we dis-
cuss in Section 5.1. To justify the equivalences between these decoded expressions, we instantiate
the theorems previously encoded as rewrite rules, as discussed in Section 5.2. For theorems with
preconditions, this involves querying the e-graph for further justifications. Finally, we discuss in
Section 5.3 how we compose individual proof steps into a complete proof that is verified by Lean.

The blue parts of Fig. 2 represent extensions which are not necessary to the core procedure, but
useful in practice. In Section 6.1, we discuss how to improve our handling of definitional equality by
encoding specific definitional equality rules in the e-graph. Section 6.2 discusses how we increase
the number of suitable theorems by specializing theorems that we cannot handle in their full
generality. And, finally, in Section 6.3 we discuss how we build upon the ideas of [Koehler et al.
2024] to integrate intermediate reasoning steps into our approach.

4 Encoding

To leverage e-graphs and equality saturation for conditional rewriting on equational proofs, we
need to define a suitable encoding of theorems, and thus necessarily, of terms. We discuss the
principles of our encoding for Lean, which should transfer to similar systems, like Rocq.

4.1 Encoding Lean Expressions

Terms in Lean are elaborated to terms of a A-calculus based on an extension of the Calculus of In-
ductive Constructions [Coquand and Huet 1988; Coquand and Paulin 1988]. Lean’s specific theory
was first described in [Carneiro 2019], with subsequent changes in [Carneiro 2024; Ullrich 2023].
Figure 3a shows a slightly simplified syntax of this expression language.

ex=appee|lamee|forallee tz=apptt]|lamtt|foralltt
|leteee]|bvarn|fvari | bvar t | fvar t | mvar ¢
| mvari| constif|sort ¢ | const f|sortt|litt
|litn]|projine | zero | succt] ...

£ = zero | succ €] ... | proof t | inst ¢t | eqtt
wherene N,ie J |n|i
and ? denotes a list wheren e N,i e J

(a) A simplified view of Lean’s expressions. (b) The core of our e-graph encoding language.

Fig. 3. Lean’s core expression language and our encoding for representing it in e-graphs

The typical constructs of A-calculus, such as application, A-abstraction, V-quantification, and
let-abstraction, are represented as expected. As Lean uses a locally-nameless representation [Char-
guéraud 2012], bound variables (bvars) are represented using de Bruijn indices. The first argument
of binders declares the type of the bound variable. Free variables are represented as named fvars
over some ambient set of identifiers J. Metavariables (mvars) represent named holes in expres-
sions, to be filled by further elaboration steps. Constants (consts) denote named definitions, like
Bool or Nat.add_comm, known to Lean’s environment. For universe polymorphic constants like

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

25:8 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

the product type Prod, the const construct includes a list £ of universe levels. The sort construct
represents type universes of a given level, where sort zero is the universe of propositions which
we also denote by Prop. As Lean’s type theory relies on an infinite hierarchy of type universes
with polymorphism, universe levels require an entire language £ of their own. For simplicity, we
omit most considerations of universe levels in this paper. Finally, Lean’s expression language con-
tains two “internalizations” introduced in [Ullrich 2023] to improve the computational overhead
of common constructions. First, the lit construct represents natural numbers directly as literals to
avoid the overhead of the usual unary encoding S (... (S 0)).* Second, proj i n e represents the
application of the nth projection of the structure type named i to the expression e, which avoids
the overhead of the usual representation based on calling i’s recursor.

For convenience, we denote sequences of (nested) applications with app. When an expression
is irrelevant or can be inferred from context we sometimes write _, or ... if there are multiple
such expressions. Analogously, we may omit type annotations of bound variables and write Ax, e
instead of Ax : T, e.

E-Graph Terms. Our term encoding, shown in Figure 3b, is largely based on Lean’s expression lan-
guage. However, it has slight modifications to increase syntactic uniformity by representing some
definitionally-equal terms using the same syntax: First, we eliminate let and proj, as they can al-
ways be reduced to other constructs. Similarly, we could remove lit, yet we keep it to leverage its
performance benefits. Second, we add constructs for proof erasure and type class instance erasure.
Proof erasure enables us to satisfy Lean’s proof irrelevance rule, which states that any two proofs
p1 and p, of the same proposition P are definitionally equal [Carneiro 2024]. We achieve proof
irrelevance in an e-graph syntactically by encoding both p; and p, as the same term proof P. Type
classes are not built into Lean’s core expression language, but they are a common occurrence in
practice. Thus, we also introduce type class instance erasure to create syntactic equality for differ-
ent instances ¢; and ¢, of the same type class C. While there does not exist a rule in Lean’s type
theory which states that all instances of a given type class are definitionally equal, they almost
always are in practice (for example, see [Wieser 2023]). And as our procedure is safeguarded by
Lean’s proof checking, we can safely apply this heuristic without having to worry about unsound-
ness. Thus, we encode both ¢; and ¢, using the syntax inst C. The final construct we add to the term
language is the internalization eq t; t, of equivalence (= or <>) between terms #; and #,. This con-
struct is used for equivalence reflection in the e-graph, as discussed in Section 4.3. Finally, we note
that our term language collapses expressions, universe levels, natural numbers, and identifiers into
a single language for implementation reasons.

Normalization and Encoding Function. We encode Lean expressions into e-graph terms in two steps.
First, a normalization function |-| eliminates the let and proj constructs. Then, we map the resulting
expression to an e-graph term according to the encoding function [-].

Definition 4.1 (Normalization and Encoding). Let e be a Lean expression. Then we define its nor-
malization |e| as:

Iz¢el ife=lete; ey es
o SR 1] i = projine’
© | ctr e eyl if e = ctr e; ey, where ctr € {app, lam, forall}
e otherwise

“The lit construct is also used for string literals, which we omit here for simplicity.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:9

Given a normalized expression e, the encoding [e] is defined as:

inst [C] ife : C where C is a type class

proof [P] ife: P: Prop

eq [1] [r] ife =app (constEq _) _Ir

eq [1] [] if e = app (const Iff) [r

ctr [e1] [eo] if e = ctr e; ey, where ctr € {app, lam, forall}

Ie] =

e otherwise

We write {(e) for the {-reduction of e which inlines let-bound expressions, and 7, to denote
the nth projection of the structure type named i as in [Ullrich 2023]. Accordingly, |e| is always
definitionally equal to e. Subsequently, we generally assume expressions to be normalized, and
thus simply write [e] instead of [|le]]. Also, we sometimes use [-] on sets of expressions or on
terms of Lean’s user-facing language. The latter is to be interpreted as first elaborating the term
and calling [-] on the resulting expression.

Example 4.2. Let e be the expression representing let x := 0; x = 1.
Elaborated, e becomes let (const Nat) (lit 0) (app (const Eq _) (const Nat) (bvar 0)) (lit 1). Then
e normalizes to [le] = [{(e)| = app (const Eq _) (const Nat) (lit 0) (lit 1). This normalized expres-
sion encodes to [|le]] = eq [lit 0] [lit 1] = eq (lit 0) (lit 1).

Encoding Patterns. The encoding function [-] turns Lean expressions into e-graph terms. How-
ever, when constructing rewrite rules we need to turn expressions into e-graph patterns. The e-
graph pattern language extends the term language with named pattern variables, denoted ?i with
i € J. When encoding the body e of a theorem VX, e as a rewrite rule, the quantified variables x
are encoded as pattern variables. We use “quantified variables” for x € X as an opaque term to
abstract over how they are represented in Lean’s expression language. We define an extension of
[-] which encodes expressions as patterns given the quantified variables x:

Definition 4.3 (Encoding for Patterns). For all x € %, we extend our encoding [-] with the follow-
ing case:

[x] :=?iy, where i, is a unique identifier for x

We also apply additional normalization steps to theorems’ expressions to better deal with the
fact that terms appearing in rewrite rules cannot themselves be rewritten during equality satura-
tion. Due to this restriction, rewrite rules’ terms which would be subject to definitional reductions
like - and n-reduction or natural number arithmetic can never be reduced. Thus, we perform
reductions beforehand using an extended normalization function:

Definition 4.4 (Extended Normalization). We write |e., for the expression obtained from e by
| -|l, while also applying - and p-reduction on all applicable subterms, and evaluating internalized
natural number operators on lits.

As we generally assume expressions to be normalized, we usually write [-] instead of [| - |.,]-.

Example 4.5. Let e be the expression representing (4 x = x + y) y, quantified over variable y.
That is e := app (lam (const Nat) (app (const Nat.add) (bvar 0) y) y. By f-reduction, it normal-
izes to |le|., = app (const Nat.add) y y. Finally, this normalized expression encodes to [|e]..] =
app (const Nat.add) ?y ?y.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

25:10 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

Transferability. While the translations given above are expressed in terms of Lean’s expression
language, the same principles could be transferred to other ITPs, like Rocq. Lean’s expression lan-
guage is sufficiently similar to that of Rocq [Sozeau et al. 2025], such that the following constructs
can be translated as above: app, lam, forall, let, bvar, const, sort, proj. Rocq’s constructs for induc-
tive types and their constructors can be translated as we do for constants. The pattern matching
construct can be translated opaquely, as we currently do for recursors in Lean (which are rep-
resented as consts), as we do not yet implement any of their reduction rules. Similar reasoning
applies to Rocq’s (co-)fixed point constructs.

More relevant differences appear when considering definitional equality. For example, our Lean-
based encoding erases proofs to capture proof irrelevance. In Rocq, however, proof irrelevance is
not built-in, which necessitates the omission of proof erasure. A more difficult change would be
the handling of type class instances. In Lean, type class instances are expected to be unique up
to definitional equality. This is not the case in Rocq. Thus, type class instance erasure should be
omitted. This, however, causes problems during e-matching and proof reconstruction, for which
we are not currently aware of an obvious solution.

4.2 Selecting Suitable Theorems

Just as Lean and e-graphs use different languages, they also use different objects for rewriting. In
Lean, one uses equational theorems, whereas an e-graph requires rewrite rules. In the following,
we introduce a heuristic approach to select and encode suitable equational theorems into rewrite
rules. The principle guiding this approach is to construct rewrite rules in a way which makes them
amenable to proof reconstruction (see Section 5). In this section, we start by deriving properties
required of theorems to be sensibly encoded as rewrite rules. Based on these properties, Section 4.3
describes the actual encoding.

For the rest of this section, let T denote a theorem of the form Vx, L ~ R, where ~ represents
= or «<>°. We consider only the properties needed to encode a rewrite rule for T in the forward
direction, that is, from L to R. The reverse direction is analogous. We write type(e) for the type
of an expression e, which we also apply to sets of expressions. By e; C e, we denote that ey is a
subterm of ey, with e; C e, also requiring e; # e,. Additionally, we write vars(p) for the set of
quantified variables x € X for which a corresponding ?i, appears in the e-graph pattern p, and
extend this to sets as: vars(P) := | e p(vars(p)). Note that generally x C e «» x € vars([e]) due
to aspects of encoding like proof erasure.

Basic Requirements for Rewrite Rules. The simplest form of rewrite rule p; = p, matches a given
pattern pq, producing a substitution o, and equates the terms o(p;) and o(p,). However, this only
works if the pattern variables in p; are a superset of the pattern variables in p,. If we naively
translate T to a rewrite rule [L] = [R], this translates to the requirement:

Ry : vars([R]) € vars([L])
A common, and practical, restriction on rewrite rules is also to disallow [L] from matching every

possible term. This is the case when L is a quantified variable, which translates to the following
requirement:

mziLg)Z'

SCongruence closure and E-graphs work for a more general setting, for any equivalence relation. We could use Lean’s
quotient types to reason about these with equality, but this is outside of the scope of this paper.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:11

Recoverability of Variables by Type Inference. All further requirements are to ensure that T is
suitable for proof reconstruction. This is the case if for each rewrite from term [e;] to [es]] by
T’s rewrite rule, we can recover expressions € for all X, such that T(é) unifies with e; ~ e,. In
the naive translation of T as a rewrite rule (as [L] = [R]), the only variables we can recover
are vars([L]), which are matched during equality saturation. This is insufficient for two reasons.
First, the encoding function [-] does not preserve all quantified variables as pattern variables. For
example, quantified variables might be erased as part of proof erasure. Such variables are then
not assigned by matching during equality saturation and cannot be recovered. This problem is
addressed in subsequent sections. Second, not all quantified variables of T need appear in L in
the first place. For example, in the trivial theorem V(a : Type)(l : List a),l = I, the left-hand
side [does not reference @, which therefore does not appear in the rewrite rule ?I =7?I. In this
example, we can however recover a by type inference on I. Thus, we consider a variable to be
recoverable if it is subject to pattern matching, or can be recovered from other variables by type
inference. Variables recoverable by type inference from an initial set X of variables are captured
by the following definition.

Definition 4.6 (Type Closure). We define the “type closure” w of variables X to be the smallest
fixed point satisfying w(X) = X U{x | 3y € w(X), x € vars(type(y))}.

We can then state the requirement that all of T’s variables be recoverable as:
Rs : x C w(vars([L]))

Handling Propositional Conditions. A common case which is not allowed under the above re-
quirements are theorems with propositional conditions. For example, the equation f = 1 holds
only if x # 0. Thus, the corresponding theorem is V(x : R)(h : x # 0), i = 1, where h violates
requirement Rs. To rectify this, we handle propositional variables specially.

Variables for propositional conditions differ from other quantified variables in that we do not
expect them to be recoverable from the theorem’s body. For example, in the theorem above, we
do not expect the proof h : x # 0 to be recoverable from the variables in f = 1. However, to
ensure that a proof for a given propositional condition can be found during proof reconstruction,
we check that the condition is satisfied before applying a rewrite during equality saturation. For
example, we only apply the rewrite for)—; = 1 after checking that x # 0. For this purpose, we
endow theorem T with a set of propositional conditions P(T).

Definition 4.7 (Propositional Conditions). Let P(T) be the set of variables x € X, where:

(1) type(x) : Prop, and
(2 (xCL)—>3g,(xc gC L) A (type(g) : Prop)

The set P(T) captures those propositional quantified variables which we cannot recover by
pattern matching on [[L] or type inference. That is, a variable x is a propositional condition if (1) it
is a proof and (2) if it does appear in L, then it appears nested in another proof term g. Propositional
variables appearing nested inside other proof terms in L cannot be recovered by pattern matching,
as our encoding erases proof terms and only yields proof [type(g)] - thus erasing any reference
to x or its type. Variables which are not nested can be recovered by pattern matching and are
thus excluded from P(T). We denote the set of these variables recoverable by pattern matching,
satisfying (1) but not (2), as P(T).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

25:12 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

For theorems T with propositional conditions, we construct a rewrite rule such that it matches
both [L] and all P € [type(:P(T))]. Thus, we rephrase our restrictions as:®

Ry : vars([R]) € vars([L]) U vars([type(P(T))])
Ry ALV type(P(D)) \ % # @
Rs3 : x C w(vars([L]) v P(T)) U P(T)

Handling Type Class Conditions. Much like propositional conditions, type class instances can be
considered as conditions. Unlike propositions, type class instances usually do appear in the body
of a theorem. For example, consider the theorem V & (i : Add a)(x : @), x+x = x+x, where Add is
a type class which requires o to have a + operator. Here, the instance i appears in the body, as x +x
is syntactic sugar for HAdd.hAdd a a a (instHAdd « i) x x. However, we erase the instance and
encode the subterm instHAdd « i as the term inst [HAdd « « «]. This way, the encoded term only
requires matching terms to have an HAdd a « « instance, but not necessarily an Add « instance
as required by the theorem.” To ensure correctness, we need to check that an instance for Add «
can be synthesized before applying the theorem’s rewrite rule during equality saturation. For this
purpose, we endow theorem T with a set of type class conditions, analogous to how we defined
the set of propositional conditions.

Definition 4.8 (Type Class Conditions). Let C(T) be the set of all variables x € X, where:

(1) type(x) is a type class, and
(2) (xC L) > 3j,(xC jC L) A (type(j) is a type class)

Again, Condition (2) excludes instances which appear non-nested in the body, as these can be
recovered by matching. We denote this set of variables, satisfying (1) but not (2) as A(T). The
restrictions we impose for type class conditions differ from those of propositional conditions, as we
do not match on type class conditions during equality saturation. Thus, only Rj is extended while
R, and R, remain unchanged. We add a fourth restriction to ensure that all variables appearing
in the type class conditions are resolved by matching:

R : % C w(vars([L]) U P(T)) U P(T) U C(T) U E(T)
Ry = vars([type(C(T))]) C vars([L]) U vars([type(P(T))])

Restriction Ry is necessary to ensure that we obtain complete terms for type classes and can
run synthesis on them during equality saturation.

4.3 Encoding Theorems as Conditional Rewrites

With the requirements for suitable theorems established, we now describe how to construct their
conditional rewrite rules. The main challenge is checking satisfaction of propositional conditions
during equality saturation. We cover this by addressing two questions. (1) How do we represent
proven propositions in the e-graph? (2) How do we check satisfaction of a propositional condition
based on the previous representation.

In R3 we write just P(T), as w(P(T)) = w(P(T) U vars([type(P(T)]).
"This is similar to the issue of proof variables appearing nested as covered by Condition 2 of P(T).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:13

Representation of Facts. We call proven propositions “facts” and represent them as special terms
in the e-graph using the gadget depicted below:

At the heart of this gadget lies an e-class which contains the term const True and is used to
represent facts. The e-class is depicted as the dashed box at the top right, which we refer to as T.
This representation of facts follows from the theorem VP : Prop,P < (P = True) also used in
[Bourgeat 2023]. To mark a proposition as proven, it suffices to add it to T. A special class of facts
which we mark in this way is the conjunction of arbitrary facts. That is, for any given facts P; and
P, we also make P; A P, a fact by adding an e-node representing T A T to T, as shown above.®
We also equip T with e-nodes for explicitly reflecting equalities which are otherwise implicit in
the e-graph. Namely, for each e-class c in the e-graph, we add an e-node eq ¢ ¢ to T. Thus, for
any equivalent terms t; and 5, T represents eq #; #,. Finally, we introduce a fact construct used
to syntactically mark terms which are facts.” Specifically, we maintain an e-class containing the
single e-node fact T. Thus, for any proposition P, if the e-graph contains fact [P], then P must be
a fact.

Conditional Rewrite Rules. Our encoding of theorems without conditions is straightforward. Let
T : V%, L ~ R be a theorem satisfying the conditions described in Section 4.2. If P(T) = €(T) = @,
then we construct a corresponding rewrite rule simply as [L] = [R].

Propositional Conditions. If P(T) # @, then a rewrite for T must check for satisfaction of all P €
type(P(T)). We check for satisfaction of P syntactically by matching the pattern fact [P] for each
P. Thus, a rewrite for T must match both [L] and fact [P] for each P € type(P(T)), and merge the
e-classes found for L and R. E-matching on a set of patterns is usually covered by “multipatterns”.
However, the egg framework does not support proof producing multipatterns. Thus, we exploit
the properties of our gadget and construct the single pattern: fact [L = L A /\ Petype(P(T)) P]. The
subterm L = L is used solely to e-match on L, and relies on the fact that for any term L in the
e-graph, [L = L] € T. Thus, the pattern matches L and all propositional conditions of T, but only
if the conditions are facts.

Type Class Conditions. If C(T) # @, then we also need to check that an instance can be syn-
thesized for each C € type(C(T)). For this, we call Lean’s type class synthesis during equality
saturation. Specifically, after e-matching T’s rewrite rule’s pattern we obtain a substitution o. Re-
striction R, ensures that all quantified variables appearing in each C are covered by . Thus, o([C])
is guaranteed to yield an e-node. As we cannot run type class synthesis on an e-node, we must first
obtain a concrete term represented by the e-node. We arbitrarily choose the e-node’s representa-
tive which we denote repr(c([C])). This choice relies on the heuristic that C represents a type,
which, aside from propositions and dependent types, are usually the only members of their e-class.
To finally check the synthesis condition, we decode repr{c([C])) into a Lean expression and run
Lean’s type class synthesis.

8More precisely, this is app (app (const And) T) T above.
“We omitted the fact construct from the syntax in Figure 3b, as it is only relevant here.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

25:14 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

Based on these approaches, we define the conditional rewrite rule for a given theorem.

Definition 4.9 (Conditional Rewrite Rule). A conditional rewrite rule “M if G = L = R”, consists
of the following objects:

« M is a pattern that we match on, yielding a substitution o over vars(M).
+ G is a decidable proposition over o which guards the application of the rewrite.
+ L and R are patterns that will be equated under o if G holds.

For a theorem T : VX, L ~ R satisfying the restrictions R, we generate the conditional rewrite rule
M if G = [L] = [R], with:
e M := fact [[L =LA /\PEtype(T(T)) P]], and
« G(0) := VC € type(C(T)), synthesizable(repr(c([C])))
Note that M contains the propositional conditions and G represents the type class conditions.
By synthesizable we denote the predicate of a given term having a type class instance, which we
decide by calling Lean’s type class synthesis.

Corollaries. Our approach to conditional rewriting has several consequences. First, as facts are
terms in the e-graph, they can be rewritten. Thus, if a rewrite requires condition P, but we only have
fact P’, then a theorem like P <> P’ can derive P during equality saturation. However, it is possible
that a condition which would be provable fails to become a fact simply because it is not a term in the
e-graph. Second, as propositions can be reasoned about equationally as P = True, we can extend
the set of allowed theorems to any of the form VX, P for P : Prop. When P is not an equivalence, we
interpret it as VX, P = True. In particular, this means that ground facts like 0 < 7 are added to the
e-graph by the corresponding ground rewrite rule [True] = [0 < x]). Finally, the explicit equality
construct eq entails that equivalence of terms cannot purely be checked by comparing their e-
classes. This follows as we reflect equivalences from e-classes to eq facts, but not vice versa. Thus,
equivalence of terms #; and t; must be checked by eq [t;] [fz] € T. This is contrary to [Bourgeat
2023] who “materializes” eq nodes into e-node equivalences via V x y, ((x = y) = True) —» x = y.
This does not suffice for our setting, as we require explicit eq nodes for e-matching of facts.

5 Decoding

As a proof checker, Lean only deems a theorem proven if a well-typed proof term is provided.
Thus, to use equivalences discovered by egg, we must reconstruct Lean proof terms from egg
“explanations”. Explanations are proof witnesses for e-graph equivalences.

Definition 5.1 (Explanation). An explanation for an equivalence between terms #; and ¢, is a
sequence t1, ji, o, o, - Ju_1, Iy, Where each term # is equivalent to #; according to justification
Ji- A justification j; is a triple (r;, d;, p;) of a rewrite rule (identifier) r;, a rewrite direction d;, and a
subterm position p; in #; at which the rewrite is applied.

We reconstruct a proof term for a given explanation in three steps. (1) We decode the e-graph terms
t; into Lean expressions ;. (2) We instantiate the theorems corresponding to the rewrite rules r;,
such that they justify the equality between the subterms of ¢; and e;; at position p;. (3) We extend
the previously instantiated theorems to proofs of the full equalities e; = ¢;; 1 and combine them by
transitivity to obtain the final proof.

5.1 Decoding E-Graph Terms

The encoding of Lean expressions to e-graph terms via [-] erases some subterms. Thus, we de-
fine a decoding function () from e-graph terms to Lean expressions, which construct expressions
containing holes (mvars), which are filled in by later steps of proof reconstruction.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:15

Definition 5.2 (E-Graph Term Decoding). Lett be an e-graph term. Then, we define the decoding
function () to a Lean expression as follows:

mvar i ift = inst C, with fresh i and mvari : (C)

mvar i ift = proof P, with fresh i and mvari : (P)
M) = app (const Iff) () (£2) ift = eqt; ty and type(t;) : Prop

app (const Eq) _ (t1) (t2) ift = eqt; t; and not type(t;) : Prop

ctr (t1) (t2) ift = ctrt; tp, where ctr € {app, lam, forall}

t otherwise

Both type class instances and proof terms are erased during encoding and are turned into (typed)
holes. Equivalences (eq) are turned into < or =, depending on the type of their terms. This choice
is heuristic, as propositions need not be related by < instead of =, even if it is idiomatic. In our
implementation, we backtrack when this choice was incorrect.

5.2 Theorem Instantiation

Lett,(r,d, p),t’ be one step in an explanation, which rewrites the subterm u of to the subterm u’
of t’ by rewrite rule r, derived from theorem T : VX, L ~ R. We consider here how to construct a
proof for the equivalence of the subterms u and u’ by instantiating T.

Lets := (u) and s” := (u’). To instantiate T such that it produces a proof of s ~ s’, we need
to assign all variables in X with expressions @, such that T a : s ~ s”. We assign these variables
in steps, using the requirements R laid out in Section 4.2. Specifically, by R3 we know that ¥ C
w(vars([L]) U P(T))u P(T)UC(T)UC(T). Thus, we can construct an assignment of each variable
x € X depending on which of the following cases it belongs to.

(1) If x appears directly in the rule’s left-hand side, x € vars([L]), then we obtain an assignment
for x by unification of L and s. They unify as [L] matches [s] syntactically according to the
explanation and by our construction of rewrite rules.

(2) If x is a variable for a propositional condition, x € P(T), then we first reconstruct all vari-
ables y appearing in the type of x. By our construction of rewrite rules, in particular the
pattern M, all propositional conditions are e-matched during equality saturation, thus pro-
ducing an assignment for y. However, the explanation term t only captures an assignment
for the pattern [L]. Thus, if y does not appear in vars([L]), we rely on a record of which
e-classes matched against which variables during equality saturation. Using this record, we
obtain a term for y by querying the e-graph for a representative term corresponding to the
matched e-class. With all variables y in the type of x reconstructed, we now denote the type
of x as P, and reconstruct a proof for it, as follows. By our construction of rewrite rules, we
must have matched fact [P] during equality saturation.We can therefore obtain an explana-
tion and decode a proof of P = True, and assign this to x.

(3) If x € w(vars([L]) U P(T)), then x is either assigned by the two prior cases, or we assign it
by type inference on some previously assigned variable y.

(4) If x is a proof term recoverable by unification, x € P(T), then we know that [type(x)] C [L]
and variables in type(x) are assigned by (1). The expression s must contain a subterm of type
type(x), with variables assigned, at the same position where x appears in L. Thus, we obtain
an assignment of x by unifying L and s.

(5) If x is a variable for a type class condition, x € C(T), then by R, we know that we can use
the previous cases to get an assignment for all variables in type(x). To obtain an assignment
for x itself, we use type class synthesis on type(x) with all variables assigned, which must
have succeeded during equality saturation.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

25:16 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

(6) Finally, if x is a type class instance recoverable by unification, x € C(T), then we know
[type(x)] E [L] and variables are assignable by (1). Analogous to (4), s contains an expression
of type(x), with all variables assigned, at the same position where x appears in L. Therefore,
we assign x by unification of L and s.

Example 5.3 (Theorem Instantiation). To give an example of the above procedure, we choose T
to be the theorem stating that for lists whose elements have an additive commutative monoid
structure, the sum of those elements is preserved under permutation:

YV {M} [inst : AddCommMonoid M] {1, 1, : List M} (h : 1,.Perm 1,), 1;.sum = 1,.sum

Here, vars([L]) = {1;,M} (M is an implicit argument to sum), P(T) = {h}, C(T) = {inst}, and
P(T) = C(T) = . We only cover 15 in w(P(T)), as 1, appears in the type of h. Now, consider the
explanation step [[1, 2, 31.sum],(rr,=,T),[[3, 2, 1].sum], where rr identifies the rewrite
rule of theorem T, = indicates that it was applied in the forward direction, and T denotes that it
was applied at the term’s root. The assignment of T’s variables then proceeds as follows. We assign
all variables in vars([L]) by Case (1). That is, by unification of [1, 2, 3].sumwith 1;.sum, we
get 1y — [1, 2, 3] and M — Nat. We assign h by Case (2). Specifically, we first ensure that all
variables in the type of h have been assigned. For 1; and M this is already the case. As 1, & vars([L])
we obtain the assignment 1, — [3, 2, 1] by consulting the e-matching record mentioned in
Case (2). Thus, we resolve the type of has [1, 2, 3].Perm [3, 2, 1]. By our construction of
rewrite rules, the e-graph must contain a proof of [[1, 2, 3].Perm [3, 2, 1]1] = [True], from
which we assign h. Finally, we assign inst by Case (5). First, we ensure that all variables in the
type of inst have been assigned, which is already satisfied by M +— Nat. Thus, we assign inst
by type class synthesis for AddCommMonoid Nat, which must succeed, as this was checked during
equality saturation.

Above, we assumed that explanation steps are justified by rewrites which follow from theorems.
However, we also use rewrites which are not derived from theorems. First, we use rewrites to
maintain the gadget for representing facts, by adding equivalences between eq t t and [True] for
all terms ¢. This yields explanation steps between e = e and True for some expression e. This step
is however trivially provable. And second, we use rewrites rules to encode certain definitional
equalities, such as - and n-reduction. However, when we know that two terms are definitionally
equal, they are provably equal by reflexivity.

5.3 Proof Composition

To construct a full proof, we connect the individual proof steps. Let t, (r,d, p),t’ be one step in
an explanation, with e := () and ¢’ := (¢’). Then e and e’ only differ at position p. That is, for a
suitable choice of expression context € and subexpressions s and s”, we get e = €(s) and e’ = e(s”).
In the previous section, we constructed a proof of the equivalence s = s’. We now extend this to a
proof of e = ¢’. Intuitively, this extension holds by congruence:

congr:Y(fy fora = Playaz:a),(fi = o) > (a1 =a) > fia = fra

However, naively applying congruence can fail due to two problems. First, s and s’ may appear
under a binder in e and €’. In that case, the proof of s = s’ needs to be parameterized to a proof of
the form Vx,s = s’, where x generalizes the bound variable. To “zoom in” on the proof of s = s’,
congruence must then be interleaved with function extensionality:

funext : V fi fo,(Vx, fix=fox) > fi=fo

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:17

For example, a proof of f (Ax,s) = f (Ax,s”), based on the subproof h : Vx,s = s” would have
the form congr ... (rfl : f = f) (funext ... (Ax,h x)). Second, the example above only works
for non-dependent functions, by definition of congr. A generalization of congruence to dependent
functions as in [Selsam and de Moura 2016], where a; and a, can have non-definitionally equal
types, does not hold in dependent type theory, even when stated over more permissive heteroge-
neous equality. One can however construct congruence theorems specifically for each dependent
function, as proposed by the cited work and used in Lean.

As both of these problems are well-known, we rely on the implementation by Kyle Miller for
“congruence quotations”'” to extend proofs of s = s’ to e = ¢’. The final step in producing a proof
for an entire explanation 1, ji, ..., t; is then simply to connect all proofs () = (t3), ..., (t,—1) = (&)
by transitivity of equality.

Hole Instantiation and Propagation. To produce valid proofs, we need to ensure that they do not
contain holes. Let t, ji, ..., , be an explanation for the proof goal £ = X. When decoding the terms
t1, ..., t, into expressions ey, ..., &,, any proof terms or type class instances are turned into holes. For
our proof of e; = ... = e, to be valid, we must therefore instantiate these holes. We ensure that our
proof reconstruction procedure produces hole-free expressions inductively: As e; is the start term,
it corresponds to £. Therefore, we eliminate holes in e; by unification with £. Next, we ensure
that if e; is hole-free, then so is e;; after proof reconstruction. Let ¢; rewrite to e;; by application
of theorem T : V%, L ~ R on the subexpressions s; and s;;.; with ¢; := €(s;) and €, := €(s;1.1) for
a suitable choice of €. Each hole in e;, | must appear either inside s;, 1, or in the surrounding term
given by e. If a hole appears in €, then we obtain an instantiation for it from e;, as ¢; is hole-free and
thus has a hole-free €. If the hole instead appears in the subterm s;, 1, then we instantiate holes by
unification with R. Thus, after proof reconstruction e;, ; is hole-free.

In summary, holes are instantiated by unification with existing terms which have not been
obtained from decoding (the proof goal and theorems), or by propagation from previous steps.

6 Extensions

The encoding and decoding of Lean expressions and theorems discussed so far comprises the core
of our approach. However, to improve the applicability our approach in practice, we add three
extensions on top of the core procedure, which we highlight in this section. We have implemented
the core procedure and all extensions in our Lean proof tactic egg.

6.1 Definitional Equalities

As discussed before, one key challenge of using Lean expressions with e-graphs is different notions
of equality. Specifically, e-graphs consider equality of terms only up to syntax, whereas Lean’s un-
derlying notion of definitional equality includes conversion rules between syntactically distinct
terms. It is, therefore, crucial that we make these rules transparent to equality saturation to avoid
getting stuck on syntactically distinct but definitionally equal terms. Unfortunately, definitional
equality rules cannot generally be encoded as simple rewrite rules. Thus, we handle various defi-
nitional equality rules using specialized approaches.

Erasure. The simplest approach to handling definitional equality rules is to erase the correspond-
ing syntactic construct. We do this for the let and proj constructs in the normalization function
| - Il which obviates the need for their definitional equality rules. Similarly, Lean’s definitionally
equality rule for proof irrelevance is implemented by the encoding of proofs as erased proof terms
in the encoding function [-].

08ee https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/TermCongr.html.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/TermCongr.html

25:18 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

Natural Number Literals. Internalized natural number literals (lit) allow for representing natural
numbers avoiding the usual encoding S (... (S 0)). However, they introduce syntactically distinct
versions for semantically equal terms like lit 0 and const Nat.zero. To bridge this gap, we add
(dynamic) rewrite rules which convert between these representations:

lit 0 < const Nat.zero app (const Nat.succ) (lit ?n) = lit ?2(n + 1)
lit ?n = app (const Nat.succ) (lit ?(n — 1)), if 0 <n

Lean’s definitional equality also includes rules for basic arithmetic operations on natural number
literals. We cover these by adding the obvious dynamic rewrite rules.

Bound Variables, -Reduction, and n-Reduction. Arguably, the most important definitional equal-
ity rules concern the interaction between application and A-abstraction:

(Ax,e) e; —>p eq[x — ey (Ax,e x) —, e, if x is not free in e

While intuitive, when stated as above, these rules introduce significant challenges when used
with an e-graph. The core problem, which is not unique to - and 5-reduction, is the presence of
bound variables. Handling bound variables in e-graphs is notoriously difficult as their meaning is
context-dependent, while any given e-class can be used in many contexts [Koehler 2022; Schneider
et al. 2025; Willsey et al. 2021]. As a result, applying rewrites to terms containing bound variables
encoded as de Bruijn indices can lead to unwanted shadowing. To compensate for this, we imple-
ment rewrite rules such that they explicitly check for collisions, and shift affected bound variables
accordingly. For example, to implement a rewrite rule for 7-reduction using de Bruijn indices, we
introduce a shifting operator {:

lam ?t (app ?f (bvar 0)) = [(?f), if ?f does not refer to bvar 0
We implement the semantics of | using small-step rewrite rules such as:

! (bvar ?(n + 1)) = bvar ?n 1 (app ?e; ?e5) = app | (?¢1) | (%e3)

Following [Anaya Gonzalez et al. 2023], we reduce the number of propagated shifts when possi-
ble. Yet, for proof goals involving binders, these explicit shifting nodes can contribute overwhelm-
ingly to e-graph explosion. A similar problem occurs for f-reduction. Implementing a rule for S-
reduction with de Bruijn variables requires both a shifting and a substitution operator. We again
implement the semantics of substitution by small-step rewrite rules.

§-Reduction and Type Class Projections. The §-reduction rule of definitional equality states that
any definition is equal to its unfolding. Adding a rewrite rule for each definition would, however,
quickly overwhelm the practical limits of equality saturation. The same restriction also applies to
other tactics in Lean which, therefore, introduces a notion of transparency to indicate how eagerly
definitions should be unfolded. Similarly, we restrict ourselves to considering unfoldings only for
type class projections, for which unfolding may be expected by the user. For example, consider:
example (m n : Nat) : m + n = Nat.add m n := by egg

This equality does not follow syntactically, as the + notation elaborates to an application of the
type class projection HAdd. hAdd. However, the equality is evident by unfolding and reducing the
definition of HAdd.hAdd. Therefore, we generate theorems for reducing applications of type class
projections appearing in the proof goal or given theorems. In the given example, this means we
generate the following equations:

HAdd.hAdd Nat Nat Nat (instHAdd Nat instAddNat) = Add.add Nat instAddNat
Add.add Nat instAddNat = Nat.add

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:19

1-Reduction and Structure Projections. The t-reduction rules capture the reduction semantics for
recursors of inductive types. Much like with §-reduction, it is impractical to add rewrite rules
encoding i-reduction for each inductive type. In fact, even within Lean it is generally preferred
to reason with equations on definitions, instead of unfolding to recursors. Thus, we again restrict
ourselves to special cases of i-reduction. Specifically, we only consider the case of applications of
structure projections to explicitly constructed structure terms. For example, this is required in the
following trivial theorem:

example (a b : a) : Prod.fst (a, b) = a := by egg

Here, we do not run into problems with notations, as in the previous paragraph, as (,) is
directly elaborated to the constructor Prod.mk. However, the projection Prod.fst unfolds to an
application of Prod’s recursor, which by i-reduction reduces to the left term a.Therefore, we gener-
ate theorems for reducing applications of structure projections to explicitly constructed structure
terms. In the given example, we generate the following equation:

V a B ab, Prod.fst @« f (Prod.mk @ f a b) = a

Note that we do not generate an equation for the second projection Prod.snd. We can omit this
rule as the symbol Prod.snd does not appear in the proof goal, or any given theorem. Thus, any
rule matching on Prod. snd could never apply in the first place.

We apply this principle more generally when generating rewrite rules: If a rewrite rule contains
a symbol which does not appear in the proof goal or any other rewrite rule, we do not include it.
This restriction can significantly reduce the number of generated rewrite rules, for example when
considering algebraic structures which can have dozens of projections each.

6.2 Theorem Specialization

So far, we ensured applicability of theorems by implementing definitional conversions. This in-
volved generating new theorems entirely. However, in some cases we can extend the applicability
of theorems by assigning quantified variables heuristically, thus, specializing it.

Goal Type Specialization. Consider the following theorem over additive groups:
theorem sub_eq_zero (G : Type) [i : AddGroup G] (ab : G) : a-b=0+<a=b

Encoding the right-hand side of the equivalence yields the pattern eq ?a ?b. The encoding of
the left-hand side, however, yields a term which also references pattern variables ?G and ?i, as
part of the ¢ and subtraction terms. As a result, the backward direction of this theorem cannot be
turned into a rewrite rule. This theorem should however be applicable in the backward direction,
as the presence of G is merely an artifact of our encoding. To enable the backward direction, we
heuristically decide that theorems are probably going to be used on terms of certain types, for
example the type of the current proof goal. Based on this assumption, we specialize the theorem
by unifying the type of the left- and right-hand side with the expected type. For sub_eq_zero this
unification assigns G. Thus, if we are proving a theorem about, for example, the integers, then goal
type specialization assigns G := Int. This eliminates the pattern variable ?G from the encoding
of the left-hand side, which leaves ?i as the only variable blocking the backward rewrite rule.
However, by specializing G to Int, we also specialize the type of i to AddGroup Int. We can therefore
eagerly synthesize the instance i, which eliminates ?i from the encoding. In total, this leaves the
left-hand side only with pattern variables ?a and ?b, which allows the backward rewrite rule.

Explosion. For many theorems, goal type specialization does not suffice to enable additional
rewrite directions. Take, for example, the following theorem over additive groups:

theorem neg_add_cancel (G : Type) [i : AddGroup G] (a : G) : —a +a =20

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

25:20 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

The encoding of this theorem contains ?G and ?i on both the left- and right-hand side. However,
the backward direction is obviously not applicable, as it requires the “creative choice” of a. In some
cases, it can be useful to automate these creative steps by heuristically specializing all missing
variables with all matching terms in the local context. We call this approach explosion, due to the
combinatorial explosion of specialized theorems which can occur, when applying this technique.
If we apply explosion for neg_add_cancel in a local context containing additive group elements x,
y, and z, we add the equations:

-X + X =0 -y +y =20 -z +2z2=20

All of these equations admit rewrite rules in both directions. Explosion must be used with cau-
tion as it can, as the name suggests, explode the number of generated theorems, and is not suitable
for most proof goals. However, we have found it to be useful in the context of the Equational The-
ories Project [Bolan et al. 2026]. This project involves proofs using equations over simple objects,
which are connected by equations of (bounded) arbitrary shapes, like x o (y°z) = (x°x)w. These
properties make explosion both suitable and useful. However, when non-trivial creative terms
are required, this simple heuristic does not suffice. Instead, we rely on humans to inject creative
guidance into the process.

6.3 Guidance

As an automated procedure, equality saturation has limitations with respect to the (sizes of) prob-
lems it can solve. In [Koehler et al. 2024], these limitations are investigated for the use cases of
program optimization and equational reasoning. Their results point to “a general characteristic of
equality saturation: either a successful rewrite sequence is found relatively quickly, or, computational
costs explode.” That is, long sequences of rewrites tend to be infeasible as the size of the e-graph
grows too quickly. As a solution, they introduce the notion of guided equality saturation: Instead of
trying to perform an ambitious rewrite from term ¢; to t,, in a single run of equality saturation, they
introduce intermediate goals t,, ..., t,_ called guides. Then only equality saturations from each t;
to t;,1 are performed, thus replacing a single long run of equality saturation with multiple short
runs significantly reducing the danger of reaching resource limits. To use guidance with our egg
tactic, we introduce a syntax reminiscent of Lean’s calc tactic and resembling the pen-and-paper
equational reasoning style:
example [AddGroup G] (a : G) : -(-a) = a := by
egg calc [add_assoc, zero_add, add_zero, neg_add_cancel]
_=-(a) +o0
-=-(a + (-a+a
=0+ a

= a

Aside from breaking up long runs of equality saturation, guides provide two additional benefits.
First, they allow us to write proofs in the pen-and-paper-style closly resembling textbook proofs,
by separating justifications (what we called contextual knowledge in Section 2) from the actually
interesting reasoning steps. Second, guides make it possible to inject creative steps into the rea-
soning, which could not otherwise be derived by equality saturation. In the example above, the
creative steps are adding a magic 0, and rewriting that 0 to -a + a. The theorem used to justify the
second step is neg_add_cancel, which, as discussed in the previous section, can only rewrite from
-a + ato 0 but not vice versa. Thus, in an unguided attempt at proving the goal, neg_add_cancel
could never be applied, as the e-graph does not contain the relevant term -a + a. However, by pro-
viding the guide -(-a) + (-a + a) explicitly, we add the relevant term to the e-graph, enabling
the rewrite.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:21

Guide Terms. It is not uncommon for a proof to require creative terms, such as -a + a above,
without requiring an entire guide to succeed. For this purpose, we introduce guide terms: terms
which are simply added to the e-graph to enable rewrites rules which might not otherwise apply.
Using two guide terms, we can solve the previous example by only supplying the creative terms:
example [AddGroup G] (a : G) : -(-a) = a := by

egg [add_assoc, zero_add, add_zero, neg_add_cancel] using -(-a) + 0, -a + a

In fact, as stated by Zucker [2025], “the ability to seed the e-graph termbank with useful terms is
crucial for equality saturation”. From a theoretical point of view, this is important because equality
saturation is not complete for equational reasoning, unless we also enumerate all terms and add
them to the e-graph. More practically, a lack of initial seed terms can block rewrite rules which we
might expect to apply. For example, by default, trying to use the theorem sub_eq_zero : Vab, a—
b=0« a=>bonagoalc—d = 0will fail due to a lack of seed terms. Specifically, we only add
terms [c¢ — d] and [0] to the e-graph, but not [c¢ — d = 0], which is necessary for sub_eq_zero to
match. To improve the seeding of the e-graph, we automatically add derived guide terms to the
e-graph. These are guide terms which we automatically derive from the proof goal and all rewrite
rules, by considering all closed subterms. Derived guide terms, for example, solve the problem of
applying sub_eq_zero.

7 Example Use Cases

Now we consider concrete use cases to show that our approach is useful in practice by raising the
level of abstraction at which we can reason about equations. These examples are from different
areas of mathematics, and are all based on code from Mathlib, Lean’s comprehensive mathematical
library [mat 2020] containing over a million lines of formalized mathematics.

7.1 Boolean Algebra

We start by considering boolean algebras, an algebraic structure in lattice theory. As is common
in modern mathematics, this structure is built by a tower of more general structures that it keeps
refining: distributive lattices, lattices, join- and meet- semilattices, partial orders, etc. The details
of these structures are not relevant here, but Mathlib builds these definitions on top of each other
in a type class hierarchy. Each of the definitions has its own properties and equational lemmas,
and reasoning about boolean algebras requires knowing properties of all of these structures. This
modular approach to defining algebraic structures relies heavily on type class synthesis when it
comes to applying theorems from different parts of the algebraic hierarchy. This is why it is crucial
that our encoding represents type class instances uniformly using erasure, and can rely on type
class synthesis to check and reconstruct the instances as necessary.

Using algebraic hierarchies with our tactic is additionally aided by a syntax for declaring and
hierarchically extending the set of theorems we consider for proofs, which we call the egg baskets.
For example, the following lines hierarchically define a basket for generalized boolean algebras
with their equations sup_inf_sdiff and inf_inf_sdiff. We don’t want to put all our eggs in one
basket, so we define it as an extension of baskets for the underlying algebraic structures:
egg_basket lattice extends slattice_sup, slattice_inf with ...
egg_basket distrib_lattice extends lattice with ...
egg_basket bool extends distrib_lattice with sup_inf_sdiff, inf_inf_sdiff

Based on this set of theorems, we consider some proofs from Mathlib about boolean algebras.
These are based on Stone [1935], but the postulates defining generalized boolean algebra are not
purely equational. In Mathlib they slighly adapt them to be equational, and use a different notation,
but the equational reasoning is still present in the proofs. An example is shown on the left of Fig. 4.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

25:22 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

calc egg
calc egg +bool calc
y \ x U x y \ x U x
_=y \ xU (xuUxnmy) :=by rw [sup_inf_self] =y A x U (xuxnmy)
_=ynxuy\ xUx :=by ac_rfl _=ynxuy \xLUx
_ =y ux :=by rw [sup_inf_sdiff] _=yux

Fig. 4. Proof using Lean’s calc tactic on the left and our egg tactic on the right.

calc — - egg —

calc egg +bool calc

z\ (x\yuy\x z\ (x\yuy\x
_=(z\xuznxny)rn(z\yuzrnmnyr x) := by _=(z\xuznxrny)

rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] m(z\yuznyrnx)
_=zn(z\xuy n(z\yuzrnmyrnx) :=by _=zn(z\xUuy)

rw [sup_inf_left, sup_comm, sup_inf_sdiff] m(z\yuznyrnx)
_=znn(z\xuUyn(zn(z\yux)) :=by _=zn(z\xUy)

rw [sup_inf_left, sup_comm (z \ y), sup_inf_sdiff] m(zmn(z\yux))
_=zmnznn(z\xuy) nz\yux) :=byac_rfl =zmnzn(z\xuUy) mnz\yux)
_=zn(z\xuUy)mn(z\yux):=byrw [inf_idem] =zn(z\xuy nz\yux

N AN J

Fig. 5. More complex proof using Lean’s calc tactic on the left and our egg tactic on the right.

The second step of this calculation block uses the tactic ac_rf1l, which is a tactic specifically for
reasoning about associativity and commutativity (AC). This is necessary, as reasoning with AC is
notoriously difficult [Benanav et al. 1987], and, thus, more generic tactics like Lean’s simplifier
cannot generally accommodate these theorems in their procedure. While equality saturation also
has scalability issues when reasoning with AC, in practice our egg tactic has no problem brute
forcing AC on small terms, as shown on the right of Fig. 4.

We observe that, by continuously growing our bool basket with lemmas as we prove them, we
can readily build up to more complicated proofs, such as the Mathlib proof in Fig. 5. Using our
tactic, we can clarify the proof to a more readable form, skipping tedious bookkeeping steps, and
omitting all explanations, as seen on the right in the figure.

We can even omit all equational steps, and prove the theorem using a single guide term:

egg +bool using z \ x Lz xny

We choose this specific guide term as it is contained in the longest term of the explicit equational
reasoning steps. This tends to be a good heuristic, as expanded terms are likely to contain the
creative terms which are required for rewrites to apply.

7.2 Lie Algebra

Boolean algebra combines many equational theories that are well-studied and have decision proce-
dures for different aspects, like the simp_ac tactic that specifically deals with AC. In fact, a variety
of algebraic structures have dedicated tactics, like lattices [James and Hinze 2009] or commuta-
tive rings [Grégoire and Mahboubi 2005]. Building a new tactic for every algebraic structure or
equational theory, however, will likely not scale. For example, consider Lie algebras, an algebraic
structure that is common in physics. Lie algebras are vector spaces with a bilinear map [-, -], ad-
hering to the so-called Jacobi identity:

Vxyz [x[y.zll + [y [z x]] + [z [x.y]] = 0

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:23

As far as we know, there is no decision procedure for words over Lie algebras, nor any specific
tactic for them.!! To evaluate our tactic in this setting, we try to replicate the equational reasoning
of a proof from the textbook by Erdmann and Wildon [2006, Ch. 1]:

As the Lie bracket [—, —] is bilinear, we have
0=[x+yx+yl=Ilxx]+[xyl+[y.x]+[y.y] =[xyl +[y.x].
Hence condition (L1) implies
[x,y] = —[y,x] forall x,y € L. (L1°)

After setting up the algebraic definitions and creating a lie basket which includes the referenced
condition L1 ([x, x] = 0), we can directly write:
theorem L1' : Ex, y1 =-Fy, x31 :=by
have h := by egg +lie calc
0= Ex+y, x+yl
-= Ex,xd + Ex, y3 o+ By, xd 4 by, yi

. Ex, y3 + by, x1
egg +lie [h]

This formalized version does differ from the textbook in a few superficial ways: the Lie bracket is
written using slightly different notation. Our Lean version of the proof of L1’ also has to explicitly
reference the proof of the previous identity h and mention the 1lie basket in the final call to egg.
While these are all superficial syntactic differences, the proof remains very close to the textbook.
Note that we could have also shortened the proof to just:

egg +lie using Ex +y, x3 + Ex+y, y]
Compare this with the proof of the same identity in Mathlib:

theorem lie_skew : - Fy, x3 = Ex, y1 := by

have h : Ex +y, x1 + Ex+y, yl =0 :=by rw [« lie_add]; apply lie_self

simpa [neg_eq_iff_add_eq_zero] using h

While it is not the goal of the Mathlib proof to replicate the textbook proof, the justification
is non-obvious and hard to read for a simple identity. It uses a manual rewrite with an explicit
rewrite direction (denoted by <), as well as a specific simpa incantation of the simplifier tactic. In
aggregate, these cloud the important reasoning steps. As a result, it is arguably harder to write this
proof than our direct translation of the pen-and-paper steps.

Reviewing the Mathlib code of Lie algebras, we find more interesting examples, such as:

theorem neg_lie : [-x, m3 =-Ex, m3 := by
rw [< sub_eq_zero, sub_neg_eq_add, < add_lie]
simp

Again, the Mathlib proof requires explicit rewriting in different directions and separate calls to
the explicit rewriting and simplifier tactics. In the textbook this theorem is not mentioned at all, as
it is “obvious” by the bilinearity of the Lie bracket. Our tactic also makes this “obvious”: it proves it
with egg +lie without any additional steps. Notably, this proof relies on reasoning over the entire
proposition E -x, m3 = -Ex, m]3 instead of just the individual subterms, as the proof begins
by applying sub_eq_zero : ¥V a b, a - b = @ < a = b. Crucially, this theorem only applies as a
result of the extensions of goal type specialization and derived guide terms, and it is not solved by
other tactics using e-graphs.

1n fact, we chose this example precisely because of this, as suggested by a colleague working in Mathlib.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

25:24 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

€geg —
theorem map_tail_trans (a : Veca (m + 1)) (v : Vec (Vec a (m + 2)) (n + 1)) :
map tl (trans (tl a :: map tl (map tl v))) = trans (map tl (map tl v)) := by
induction m <;> cases a
all_goals egg +rise [*]

theorem rule, (as : Vec (Vec a m) n) : transpose (transpose as) = as := by
induction n <;> cases m <;> cases as <;> try cases <Vec _ (_ + 1)>
all_goals egg +rise [x, fill_nil (_ :: _)]

theorem rule, (f : a > fB) (g : f>y >y) (init : y) (as : Vec a n) :
reduceSeq (A a b => g (f a) b) init as = (reduceSeq g init o map f) as := by
induction as generalizing init
all_goals egg +rise [*]

Fig. 6. Using egg, we can automate the equational steps of the formalization by [Hagedorn et al. 2020].

7.3 Functional Array Programs

To investigate the applicability of our tactic in a non-algebraic domain, we consider theorems
for functional array programs. Specifically, we consider results from [Hagedorn et al. 2020], which
develops and formalizes rules for rewrite-based program optimization. These rules are defined over
the Rise language, which includes fixed-length vector types. These vectors are formalized in Agda
using the canonical representation of fixed-length vectors by a dependent type. The Agda proofs
of the developed rules generally involve induction or case splitting, followed by many manual
equational proof steps. In our formalization of the same proofs, we find that we can fully automate
the equational proof steps with egg. That is, out of the 17 theorems formalized, all take the form
of the proofs shown in Figure 6.

The proofs start by induction and/or cases bashing, and all resulting goals are proven by egg
using the accumulated rise egg basket. Notably, these proofs involve rewriting over the dependent
Vec type. In some cases, this involves rewriting vector lengths at the type level — however, only
up to definitional equality.!? Moreover, ruley involves rewriting over terms with binders, which
requires 5- and 5-reduction. This is handled transparently by egg. We find only one case, rule,,
where the equational reasoning is not fully automated, as the theorem fill_nil is not suitable as
a rewrite rule and is instantiated manually.

7.4 Binomial Theorem

As afinal use case, we go back to the motivational example from Section 2, the proof of the binomial
theorem from Rotman [2006]. Motivated by Koehler et al. [2024], we consider the equational steps
of the proof of Proposition 1.15, which they could not prove with guided equality saturation. The

issue are implicit preconditions, discussed in Section 2: the textbook proof uses terms like n_l T
which are not in IN in general and require casting to R for the desired arithmetic. Additionally, and
crucial to our proof, many reasoning steps are only valid subject to conditions like r < n + 1. That
is, they need conditional rewriting.

As the preconditions of casting and arithmetic are not fundamental to the theorem at hand,
it is not immediately clear which conditions need to be justified to solve the goal. In the proof

below, we therefore employ a feature of our egg tactic which allows us to postpone the proofs

2Qur tactic will also rewrite non-definitional equalities at the type level. However, our current implementation of proof
reconstruction would not be able to reconstruct proofs for these steps.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:25

of propositional conditions until after equality saturation. That is, the necessary preconditions
that cannot be solved automatically during equality saturation are presented to the user as proof
obligations. This is possible by a trivial modification of the proof reconstruction procedure. Thus,
we can conveniently handle the preconditions required for the rewrites that Koehler et al. [2024]
could not. We do, however, still have to be explicit that we are reasoning in R instead of IN and
explicit cast between these types. Aside from these technical differences, our proof follows the
structure of the proof in [Rotman 2006].

The first line in the proof enables propositional conditions of rewrites to be surfaced as proof
obligations. The line containing the egg invocation references egg baskets with facts about casts
between IN and R and arithmetic on R, as well as lemmas about the I'-function which generalizes
factorial to R. The rest of the proof proceeds essentially verbatim from the textbook, except that
we first and finally cast (1) to and from R. Finally, the last line shows the first steps of proving the
proof obligations produced by egg. These are analogous to the sub-proofs hy, ..., i1g in Figure 1b.
The proof obligations are conditions like » < n + 1 for casting subtractions liken +1—r,orn # 0
for performing arithmetic with division.

In total, we generate 15 proof obligations, all of which can be discharged by suitable tactics in one
or two lines. Combining our methods with specific theory solvers could potentially automatically
solve all of these obligations, but that is beyond the scope of this paper.

egg —
set_option egg.subgoals true
egg +cast +real calc [Gamma_nat_eq_factorial, Gamma_add_one]
Tn!/ ((r=-=D!'*xmm-r+1HDH +n! /(! *x(m-r))
_=nl/ ((r=Dx (n-r+ DY) +nl/ (rlx (n-1r))
_=nl/ ((r=-=-D'*M-rNH*0/-r+1)+1/r
_=nl/ ((r=D'*Mh-MH *(r+n-r+1)/ (r*mM-r+1)))
_=nl/ ((r=D'* - * ((n+1)/ (rx(n-r+1)))
_=Mn+ D/ (rl* (n+1-r))
_=M(n+ D/ (r!x(n+1-r)))
L all_goals try first | (norm_cast; done) | (norm_cast; omega) | ...)

7.5 Limitations and Comparisons

The previous examples showcase our egg tactic. Naturally, it has practical limitations, which we
briefly discuss here. We also compare to the behaviour of related Lean tactics.

When it comes to collecting “contextual knowledge” in the form of egg baskets, it can be difficult
to judge which theorems should be included. For example, some proofs about boolean algebras
use theorems defined over Coheyting algebras. Without sufficient knowledge about the problem
domain and its formalization, discovering such theorems is difficult. This problem is, for example,
handled much better by Lean’s grind tactic, which contains a database of all possibly suitable
theorems. In contrast, our current implementation of the egg tactic only handles on the order of <
100 theorems. This can be improved in the future by using smart premise selection procedures, as
[Blanchette et al. 2011; Czajka and Kaliszyk 2018], or by more sophisticated e-matching procedures
based on discrimination trees.

Discovering missing theorems with our tactic is additionally complicated by it only being suit-
able for closing proof goals, not making partial progress on them, as some other tactics do. While
partial progress can be trivially implemented using extraction on e-graphs, the notion of sketch
guides from [Koehler et al. 2024] presents a more promising approach.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

25:26 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

One approach we have found for addressing failing invocations of egg is to rely on guided
equality saturation. By using egg calc to iteratively specify more intermediate steps, users can
hone in on problematic reasoning steps and unveil missing theorems or capabilities.

Our practical limit on the number of theorems reflects the fact that equality saturation can easily
fail by explosively growing the e-graph, as discussed in [Koehler et al. 2024]. The same holds for
the sizes of explanations. To keep the duration of proof reconstruction on the order of seconds, we
currently limit the length of explanations we handle to 200 steps. We have various examples where
egg exceeds this length, which can vary significantly with slight changes to the initial conditions.
Using guides to reduce the length of equality saturation runs, and thus explanation length, is
also frail, as discussed in [Koehler et al. 2024]. However, using tree-structured instead of flattened
explanations, as we currently do, can significantly reduce the sizes of explanations, thus directly
addressing this problem [Flatt et al. 2022].

Finally, in the context of interactive theorem proving our tactic is sometimes slow, taking on the
order of seconds to complete difficult proofs. Therefore, keeping long-running calls to egg in proof
scripts is costly and other means of proof persistence should be considered. Other tactics like simp
and grind usually are faster completing in less than one second.

Comparison. We tried two other tactics on the three use cases we presented in the subsec-
tions before. The “simplifier” tactic simp'® greedily rewrites with given equations. The grind
tactic [de Moura and Morrison 2025] is a novel proof tactic in Lean using e-graphs, e-matching,
congruence closure, and solvers for specific theories. We provided the same inputs to these tactics
as to our egg tactic. However, in our usage of grind we cannot count out user error entirely, as
grind sometimes requires the user to decide how theorems should be turned into patterns for
e-matching, which our tactic does not require.

Running simp on our use cases fails on all reasoning steps, besides some steps of the L1’ theorem.
Most of the time, this is because simp exceeds set resource limits by falling into loops on non-
oriented theorems like associativity and commutativity.

The grind tactic proves some, but not all, reasoning steps. For the Boolean Algebra example
in Fig. 5 two steps are not proven by grind. Similarly, grind fails to prove the final step of the
L1’ theorem, and fails on the second theorem entirely. For the Binomial Theorem, grind fails on
three steps and can only prove the other steps given proofs of the necessary preconditions as input,
whereas egg discovers these preconditions automatically.

8 Related Work

Proof Tactics. The egg-based proof tactics in Lean [Koehler et al. 2024] and Rocq [Bourgeat 2023]
are most closely related to our work. We strictly improve upon the former, which also encodes Lean
terms, but does not handle binders, type classes, or conditional rewrites. The Rocq tactic imposes
restrictions on how symbols can appear in terms, and also does not admit binders. It also allows for
conditional rewrites, but does not cover how theorems are encoded as rewrite rules, or how this
affects proof reconstruction. Other tactics, focussing more specifically on congruence closure, are
Lean’s cc or Rocq’s congruence tactics. A more expansive approach is chosen by Lean’s recent
grind tactic [de Moura and Morrison 2025], which uses e-graphs with e-matching, congruence
closure and theory solvers (similar to SMT solvers). The tactic is good at deriving facts, and per-
forming case analysis, at the cost of limiting the length of discoverable rewrite sequences. The
SMTCoq plug-in [Ekici et al. 2017] provides tactics which rely on existing SMT solvers like CVC4
[Barrett et al. 2011]. Notably, their proof reconstruction uses computational reflection, instead of
direct proof term construction, by implementing a certified checker of proof certificates. It can

Bhttps://leanprover-community.github.io/extras/simp.html

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

https://leanprover-community.github.io/extras/simp.html

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:27

also generate proof obligations for uncertified steps. Hammer for Coq [Czajka and Kaliszyk 2018]
includes premise selection and covers a larger fragment of Coq’s (Rocq’s) calculus, but uses the
output of external SMT solvers merely as hints for a hand-crafted, backward reasoning proof re-
construction procedure. Isabelle’s Sledgehammer [Blanchette et al. 2011] reconstructs saturation
proofs from external solvers like Z3 [de Moura and Bjerner 2008] and Vampire [Riazanov and
Voronkov 2002]. Agda’s user-defined rewrite-rule extensions [Cockx 2019] also have many con-
ceptual similarities with our work. As these extend computational reductions in the core language
itself, they are also more conservative: these extensions only support equality constraints as pre-
conditions, and have stronger conditions on the usage of the variables on the LHS of the rewrite
for the RHS, which we relax (cf. Section 6.2.)

Equality Saturation and E-Graphs. E-Graphs were introduced in the 1980s [Nelson 1980] and
have long been used for SMT solvers. They have seen a resurgence with equality saturation [Tate
et al. 2009] and the subsequent efficient implementation of egg [Willsey et al. 2021]. Our work
builds heavily on the idea of guided equality saturation subsequently introduced by [Koehler et al.
2024]. Handling disequalities and context-sensitive facts efficiently is explored by dis-/equality
graphs [Zakhour et al. 2025] and colored e-graphs [Singher and Itzhaky 2024], respectively. These
ideas are complementary to our approach in this paper. A different approach is taken by egglog
[Zhang et al. 2023], combining datalog with e-graphs. However, it does not yet support proof
production, as in e-graphs [Flatt et al. 2022].

Formalization of Pen-and-Paper Proofs. The goal of a document that fits both as a human-readable
argument and as computer-checkable proof was already formulated in AUTOMATH [de Bruijn
1968]: “Our system should check a kind of language that comes as close as possible to what we write
in ordinary mathematics” [De Bruijn 1994]. Inspired by this, Mizar [Trybulec and Blair 1985], and
later Isar [Wenzel 2002] made further progress at aligning the syntax of their languages with the
languages in intuitive handwritten proofs.

In contrast, the systems mathNat [Humayoun 2010] and Naproche [Cramer et al. 2009] work on
reading human-written proof texts in a controlled but natural language, instead of a programming
language typical syntax. And finally, the more recent, Draft, Sketch, Prove system [Jiang et al. 2023],
intends to use informal human-written texts, interpreted by a machine learning model, as guidance
of what an automated reasoning engine should explore.

9 Conclusion

We presented an approach allowing to write proofs in an interactive theorem prover using a fa-
miliar pen-and-paper equational reasoning style found in mathematics. Our implementation as
a Lean tactic, encodes suitable theorems as conditional rewrite rules dealing with propositional
conditions as well as type class instances. We pass proof goals and rewrite rules to the egg equal-
ity saturation engine which attempts to perform the proof by rewriting with equality saturation.
Once a proof has been found, we decode the produced explanation and reconstruct a valid Lean
proof. We evaluated our approach on three case studies, demonstrating that we enable the desired
pen-and-paper style, while proving theorems that could not be proven with the existing simp or
grind tactics.

Data-Availability Statement

There is an artifact [Rossel et al. 2025] available for reproducing the work presented in this pa-
per. The latest version of the egg tactic implementation is available at reservoir.lean-lang.org/
@marcusrossel/egg and its source code at github.com/marcusrossel/lean-egg.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

reservoir.lean-lang.org/@marcusrossel/egg
reservoir.lean-lang.org/@marcusrossel/egg
github.com/marcusrossel/lean-egg

25:28 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

References

2020. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, Jasmin Blanchette and Catalin Hritcu (Eds.). ACM,
367-381. doi:10.1145/3372885.3373824

Emmanuel Anaya Gonzalez, Cole Kurashige, Aditya Giridharan, and Polikarpova Nadia. 2023. Optimizing Beta Reduc-
tion in E-Graphs. (2023). https://pldi23.sigplan.org/details/egraphs-2023-papers/12/Optimizing-Beta-Reduction-in-E-
Graphs EGRAPHS 2023.

Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds,
and Cesare Tinelli. 2011. CVC4. In Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz
Qadeer (Eds.). Springer, 171-177. doi:10.1007/978-3-642-22110-1_14

Dan Benanav, Deepak Kapur, and Paliath Narendran. 1987. Complexity of Matching Problems. J. Symb. Comput. 3, 1/2
(1987), 203-216. doi:10.1016/S0747-7171(87)80027-5

Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nipkow. 2011. Automatic Proof and Disproof in Isabelle/HOL. In
Frontiers of Combining Systems, 8th International Symposium, FroCoS 2011, Saarbriicken, Germany, October 5-7, 2011. Pro-
ceedings (Lecture Notes in Computer Science, Vol. 6989), Cesare Tinelli and Viorica Sofronie-Stokkermans (Eds.). Springer,
12-27. d0i:10.1007/978-3-642-24364-6_2

Matthew Bolan, Joachim Breitner, Jose Brox, Nicholas Carlini, Mario Carneiro, Floris van Doorn, Martin Dvorak, Andrés
Goens, Aaron Hill, Harald Husum, Hernan Ibarra Mejia, Zoltan Kocsis, Bruno Le Floch, Amir Livne Bar-on, Lorenzo
Luccioli, Douglas McNeil, Alex Meiburg, Pietro Monticone, Pace P. Nielsen, Giovanni Paolini, Marco Petracci, Bernhard
Reinke, David Renshaw, Marcus Rossel, Cody Roux, Jérémy Scanvic, Shreyas Srinivas, Anand Rao Tadipatri, Terence
Tao, Vlad Tsyrklevich, Fernando Vaquerizo-Villar, Daniel Weber, and Fan Zheng. 2026. The Equational Theories Project:
Advancing Collaborative Mathematical Research at Scale. In preparation.

Thomas Bourgeat. 2023. Specification and verification of sequential machines in rule-based hardware languages. Ph.D.
Dissertation. MIT, USA. https://hdLhandle.net/1721.1/150194

Robert S. Boyer and J Strother Moore. 1973. Proving Theorems about LISP Functions. In Proceedings of the 3rd International
Joint Conference on Artificial Intelligence. Standford, CA, USA, August 20-23, 1973, Nils]. Nilsson (Ed.). William Kaufmann,
486-493. http://ijcai.org/Proceedings/73/Papers/053.pdf

Mario Carneiro. 2019. The Type Theory of Lean. Master’s thesis. Carnegie Mellon University.

Mario Carneiro. 2024. Lean4Lean: Towards a formalized metatheory for the Lean theorem prover. CoRR abs/2403.14064
(2024). arXiv:2403.14064 doi:10.48550/ARXIV.2403.14064

Arthur Charguéraud. 2012. The Locally Nameless Representation. J. Autom. Reason. 49, 3 (2012), 363-408. do0i:10.1007/
S10817-011-9225-2

Jesper Cockx. 2019. Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules. In 25th International
Conference on Types for Proofs and Programs, TYPES 2019, June 11-14, 2019, Oslo, Norway (LIPIcs, Vol. 175), Marc Bezem and
Assia Mahboubi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2:1-2:27. doi:10.4230/LIPICS.TYPES.2019.2

Thierry Coquand and Gérard P. Huet. 1988. The Calculus of Constructions. Inf. Comput. 76, 2/3 (1988), 95-120. doi:10.1016/
0890-5401(88)90005-3

Thierry Coquand and Christine Paulin. 1988. Inductively defined types. In COLOG-88, International Conference on Computer
Logic, Tallinn, USSR, December 1988, Proceedings (Lecture Notes in Computer Science, Vol. 417), Per Martin-Lof and Grigori
Mints (Eds.). Springer, 50-66. doi:10.1007/3-540-52335-9_47

Marcos Cramer, Bernhard Fisseni, Peter Koepke, Daniel Kithlwein, Bernhard Schréder, and Jip Veldman. 2009. The Naproche
Project Controlled Natural Language Proof Checking of Mathematical Texts. In Controlled Natural Language, Workshop
on Controlled Natural Language, CNL 2009, Marettimo Island, Italy, June 8-10, 2009. Revised Papers (Lecture Notes in
Computer Science, Vol. 5972), Norbert E. Fuchs (Ed.). Springer, 170-186. doi:10.1007/978-3-642-14418-9_11

Lukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automation for Dependent Type Theory. J. Autom. Reason.
61, 1-4 (2018), 423-453. doi:10.1007/S10817-018-9458-4

NG de Bruijn. 1968. Automath: a language for mathematics. (1968).

Nicolaas Govert De Bruijn. 1994. A survey of the project AUTOMATH. In Studies in Logic and the Foundations of Mathe-
matics. Vol. 133. Elsevier, 141-161.

Leonardo de Moura and Kim Morrison. 2025. The Lean Language Reference: The grind tactic. https://lean-lang.org/doc/
reference/latest/The--grind--tactic/#grind

Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language. In Automated
Deduction - CADE 28 - 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings
(Lecture Notes in Computer Science, Vol. 12699), André Platzer and Geoff Sutcliffe (Eds.). Springer, 625-635. doi:10.1007/
978-3-030-79876-5_37

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

https://doi.org/10.1145/3372885.3373824
https://pldi23.sigplan.org/details/egraphs-2023-papers/12/Optimizing-Beta-Reduction-in-E-Graphs
https://pldi23.sigplan.org/details/egraphs-2023-papers/12/Optimizing-Beta-Reduction-in-E-Graphs
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1016/S0747-7171(87)80027-5
https://doi.org/10.1007/978-3-642-24364-6_2
https://hdl.handle.net/1721.1/150194
http://ijcai.org/Proceedings/73/Papers/053.pdf
https://arxiv.org/abs/2403.14064
https://doi.org/10.48550/ARXIV.2403.14064
https://doi.org/10.1007/S10817-011-9225-2
https://doi.org/10.1007/S10817-011-9225-2
https://doi.org/10.4230/LIPICS.TYPES.2019.2
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/978-3-642-14418-9_11
https://doi.org/10.1007/S10817-018-9458-4
https://lean-lang.org/doc/reference/latest/The--grind--tactic/#grind
https://lean-lang.org/doc/reference/latest/The--grind--tactic/#grind
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37

Towards Pen-and-Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation 25:29

Leonardo Mendonga de Moura and Nikolaj S. Bjerner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceed-
ings (Lecture Notes in Computer Science, Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 337-340.
doi:10.1007/978-3-540-78800-3_24

David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: a theorem prover for program checking. 7. ACM 52, 3 (2005),
365-473. doi:10.1145/1066100.1066102

Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, and Clark W. Barrett. 2017. SMT-
Coq: A Plug-In for Integrating SMT Solvers into Coq. In Computer Aided Verification - 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 10427), Rupak
Majumdar and Viktor Kuncak (Eds.). Springer, 126-133. doi:10.1007/978-3-319-63390-9_7

Karin Erdmann and Mark] Wildon. 2006. Introduction to Lie algebras. Vol. 122. Springer.

Oliver Flatt, Samuel Coward, Max Willsey, Zachary Tatlock, and Pavel Panchekha. 2022. Small Proofs from Congruence
Closure. In 22nd Formal Methods in Computer-Aided Design, FMCAD 2022, Trento, Italy, October 17-21, 2022, Alberto
Griggio and Neha Rungta (Eds.). IEEE, 75-83. doi:10.34727/2022/ISBN.978-3-85448-053-2_13

Benjamin Grégoire and Assia Mahboubi. 2005. Proving Equalities in a Commutative Ring Done Right in Coq. In Theorem
Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings
(Lecture Notes in Computer Science, Vol. 3603), Joe Hurd and Thomas F. Melham (Eds.). Springer, 98-113. doi:10.1007/
11541868 _7

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer. 2020. Achiev-
ing high-performance the functional way: a functional pearl on expressing high-performance optimizations as rewrite
strategies. Proc. ACM Program. Lang. 4, ICFP (2020), 92:1-92:29. doi:10.1145/3408974

Muhammad Humayoun. 2010. Mathnat-mathematical text in a controlled natural language. Special issue: Natural Language
Processing and its... (2010).

Daniel W. H. James and Ralf Hinze. 2009. A Reflection-based Proof Tactic for Lattices in Coq. In Proceedings of the Tenth
Symposium on Trends in Functional Programming, TFP 2009, Komarno, Slovakia, June 2-4, 2009 (Trends in Functional
Programming, Vol. 10), Zoltan Horvath, Viktoria Zsok, Peter Achten, and Pieter W. M. Koopman (Eds.). Intellect, 97—
112.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timoth ée Lacroix, Jiacheng Liu, Wenda Li, Mateja Jamnik, Guillaume
Lample, and Yuhuai Wu. 2023. Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs. In The
Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net.
https://openreview.net/forum?id=SMa9EAovKMC

Thomas Koehler. 2022. A domain-extensible compiler with controllable automation of optimisations. Ph.D. Dissertation.
University of Glasgow, UK. doi:10.5525/GLA.THESIS.83323

Thomas Koehler, Andrés Goens, Siddharth Bhat, Tobias Grosser, Phil Trinder, and Michel Steuwer. 2024. Guided Equality
Saturation. Proc. ACM Program. Lang. 8, POPL (2024), 1727-1758. do0i:10.1145/3632900

Charles Gregory Nelson. 1980. Techniques for Program Verification. PhD thesis. Stanford University.

Robert Nieuwenhuis and Albert Oliveras. 2005. Proof-Producing Congruence Closure. In Term Rewriting and Applications,
16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings (Lecture Notes in Computer Science,
Vol. 3467), Jurgen Giesl (Ed.). Springer, 453-468. do0i:10.1007/978-3-540-32033-3_33

Lawrence C. Paulson. 1993. Isabelle: The Next 700 Theorem Provers. CoRR ¢s.LO/9301106 (1993). https://arxiv.org/abs/cs/
9301106

Alexandre Riazanov and Andrei Voronkov. 2002. The design and implementation of VAMPIRE. AI Commun. 15, 2-3 (2002),
91-110. http://content.iospress.com/articles/ai-communications/aic259

Rocq Dev Team. 2025. The Rocq Prover. doi:10.5281/zenodo.15149629

Marcus Rossel, Rudi Schneider, Thomas Koehler, Michel Steuwer, and Andrés Goens. 2025. Artifact: Towards Pen-and-
Paper-Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation. Zenodo. doi:10.5281/zenodo.
17696648

Joseph J Rotman. 2006. A first course in abstract algebra: with applications. Pearson.

Rudi Schneider, Marcus Rossel, Amir Shaikhha, Andrés Goens, Thomas Koehler, and Michel Steuwer. 2025. Slotted E-
Graphs: First-Class Support for (Bound) Variables in E-Graphs. Proc. ACM Program. Lang. 9, PLDI (2025), 1888-1910.
doi:10.1145/3729326

Daniel Selsam and Leonardo de Moura. 2016. Congruence Closure in Intensional Type Theory. In Automated Reasoning
- 8th International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 - July 2, 2016, Proceedings (Lecture Notes in
Computer Science, Vol. 9706), Nicola Olivetti and Ashish Tiwari (Eds.). Springer, 99-115. doi:10.1007/978-3-319-40229-1_8

Eytan Singher and Shachar Itzhaky. 2024. Easter Egg: Equality Reasoning Based on E-Graphs with Multiple Assumptions.
In Formal Methods in Computer-Aided Design, EMCAD 2024, Prague, Czech Republic, October 15-18, 2024, Nina Narodytska

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_13
https://doi.org/10.1007/11541868_7
https://doi.org/10.1007/11541868_7
https://doi.org/10.1145/3408974
https://openreview.net/forum?id=SMa9EAovKMC
https://doi.org/10.5525/GLA.THESIS.83323
https://doi.org/10.1145/3632900
https://doi.org/10.1007/978-3-540-32033-3_33
https://arxiv.org/abs/cs/9301106
https://arxiv.org/abs/cs/9301106
http://content.iospress.com/articles/ai-communications/aic259
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.5281/zenodo.17696648
https://doi.org/10.5281/zenodo.17696648
https://doi.org/10.1145/3729326
https://doi.org/10.1007/978-3-319-40229-1_8

25:30 Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens

and Philipp Rimmer (Eds.). IEEE, 70-83. doi:10.34727/2024/ISBN.978-3-85448-065-5_13

Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob Botsch Nielsen, Nicolas Tabareau, and Théo Winterhalter.
2025. Correct and Complete Type Checking and Certified Erasure for Coq, in Coq. J. ACM 72, 1 (2025), 8:1-8:74.
doi:10.1145/3706056

Marshall H Stone. 1935. Postulates for Boolean algebras and generalized Boolean algebras. American Journal of Mathematics
57, 4 (1935), 703-732.

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality saturation: a new approach to optimization.
In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, Sa-
vannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM, 264-276. doi:10.1145/1480881.
1480915

Andrzej Trybulec and Howard A. Blair. 1985. Computer Assisted Reasoning with MIZAR. In Proceedings of the 9th Inter-
national Joint Conference on Artificial Intelligence. Los Angeles, CA, USA, August 1985, Aravind K. Joshi (Ed.). Morgan
Kaufmann, 26-28. http://ijcai.org/Proceedings/85-1/Papers/006.pdf

Sebastian Ullrich. 2023. An Extensible Theorem Proving Frontend. Ph.D. Dissertation. Karlsruhe Institute of Technology,
Germany. doi:10.5445/IR/1000161074

Markus Wenzel. 2002. Isabelle, Isar - a versatile environment for human readable formal proof documents. Ph. D. Dissertation.
Technical University Munich, Germany. http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.pdf

Freek Wiedijk (Ed.). 2006. The Seventeen Provers of the World, Foreword by Dana S. Scott. Lecture Notes in Computer Science,
Vol. 3600. Springer. doi:10.1007/11542384

Eric Wieser. 2023. Multiple-Inheritance Hazards in Dependently-Typed Algebraic Hierarchies. In Intelligent Computer
Mathematics - 16th International Conference, CICM 2023, Cambridge, UK, September 5-8, 2023, Proceedings (Lecture Notes
in Computer Science, Vol. 14101), Catherine Dubois and Manfred Kerber (Eds.). Springer, 222-236. doi:10.1007/978-3-031-
42753-4_15

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. egg: Fast
and extensible equality saturation. Proc. ACM Program. Lang. 5, POPL (2021), 1-29. doi:10.1145/3434304

George Zakhour, Pascal Weisenburger, Jahrim Gabriele Cesario, and Guido Salvaneschi. 2025. Dis/Equality Graphs. Proc.
ACM Program. Lang. 9, POPL (2025), 2282-2305. do0i:10.1145/3704913

Yihong Zhang, Yisu Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosenthal, Zachary Tatlock, and Max Willsey.
2023. Better Together: Unifying Datalog and Equality Saturation. Proc. ACM Program. Lang. 7, PLDI (2023), 468-492.
doi:10.1145/3591239

Philip Zucker. 2025. Omelets Need Onions: E-graphs Modulo Theories via Bottom-up E-matching. CoRR abs/2504.14340
(2025). arXiv:2504.14340 doi:10.48550/ARXIV.2504.14340

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 25. Publication date: January 2026.

https://doi.org/10.34727/2024/ISBN.978-3-85448-065-5_13
https://doi.org/10.1145/3706056
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1480881.1480915
http://ijcai.org/Proceedings/85-1/Papers/006.pdf
https://doi.org/10.5445/IR/1000161074
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.pdf
https://doi.org/10.1007/11542384
https://doi.org/10.1007/978-3-031-42753-4_15
https://doi.org/10.1007/978-3-031-42753-4_15
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3704913
https://doi.org/10.1145/3591239
https://arxiv.org/abs/2504.14340
https://doi.org/10.48550/ARXIV.2504.14340

	Abstract
	1 Introduction
	2 Challenges of Pen-and-Paper-Style Reasoning in Current Interactive Theorem Provers
	3 Overview
	4 Encoding
	4.1 Encoding Lean Expressions
	4.2 Selecting Suitable Theorems
	4.3 Encoding Theorems as Conditional Rewrites

	5 Decoding
	5.1 Decoding E-Graph Terms
	5.2 Theorem Instantiation
	5.3 Proof Composition

	6 Extensions
	6.1 Definitional Equalities
	6.2 Theorem Specialization
	6.3 Guidance

	7 Example Use Cases
	7.1 Boolean Algebra
	7.2 Lie Algebra
	7.3 Functional Array Programs
	7.4 Binomial Theorem
	7.5 Limitations and Comparisons

	8 Related Work
	9 Conclusion
	References

