
Transforming Optimization Problems into
Disciplined Convex Programming Form

Ramon Fernández Mir1�[0000−0001−7242−5532],
Paul B. Jackson1�[0000−0003−3863−8336], Siddharth Bhat2[0009−0007−6410−3681],
Andrés Goens3[0000−0002−0409−1363], and Tobias Grosser2[0000−0003−3874−6003]

1 University of Edinburgh, Edinburgh, UK
{ramon.fernandezmir,paul.jackson}@ed.ac.uk

2 University of Cambridge, Cambridge, UK
sb2743@cam.ac.uk, tobias.grosser@cst.cam.ac.uk

3 Universiteit van Amsterdam, Amsterdam, The Netherlands
a.goens@uva.nl

Abstract. Disciplined convex programming (Dcp) is a popular frame-
work for systematically reducing convex optimization problems to the
low-level conic form commonly used by convex solvers. An arbitrary con-
vex problem may not immediately be in a Dcp-compliant form, and sev-
eral manual and error-prone steps are often needed to transform it into
an equivalent form that is accepted by Dcp frameworks. We automate
this process in CvxLean, a convex optimization modeling framework em-
bedded in the Lean theorem prover. While the steps can be described
using rewrite rules, there are not clear heuristics for orienting and ap-
plying them. Instead, we carry out an efficient breadth-first search for
a suitable sequence of steps by making use of the egg e-graph-based
term rewriting system. When egg finds a suitable sequence, we automat-
ically prove it correct in Lean. This procedure is the first generic, proof-
producing approach to transform a wide range of optimization problems
into Dcp-compliant forms. Moreover, it is an important step towards a
fully-verified and user-friendly convex programming environment.

1 Introduction

Many problems in engineering, finance, and industry can be phrased as convex
optimization problems. Convex optimization generalizes linear programming. A
convex optimization problem [5] consists of a convex set (the feasible set) defined
by constraints on some domain and a convex function (the objective function)
mapping from the domain into some ordered set, usually the reals. The goal is to
find an element of the feasible set that minimizes the objective function’s value.
The popularity of convex optimization is in great part due to the development of
interior-point methods [35], which are able to solve convex problems efficiently.

Disciplined convex programming. A challenge is that interior-point solvers
accept a very restricted input format. The original problems, however, can usu-
ally be formulated in many equivalent ways and might potentially involve a wide

2 Fernández Mir et al.

range of functions and notation. Translating problems into solver-compatible
forms such as conic form requires specialist knowledge and can be a tedious and
error-prone process. A popular approach for automating this translation is dis-
ciplined convex programming (Dcp) [16]. With Dcp, input problems have to be
phrased in terms of particular functions drawn from an extensible library. The
Dcp scheme is then able to deduce that input problems are convex from certain
properties of these functions (see Sec. 2.1) and to reduce such convex problems
to conic form automatically.

Verified problem transformations. There are a number of software tools
based on Dcp and similar approaches. One example is CVXPY [10]. However,
these tools generally offer no guarantees that the transforms applied are always
mathematically sound and have been programmed correctly. An exception is
CvxLean4 [4], a convex optimization modeling framework written in Lean 4 [22].
The work reported here contributes to CvxLean. With this framework, a user
states optimization problems using definitions from Lean’s library mathlib [6]. If
the problem is in a form acceptable to the Dcp procedure (Dcp-compliant form
or Dcp form for short), CvxLean can automatically reduce the problem to conic
form and pass it to a solver. Right now, it works with MOSEK [3], and it could
easily be adapted to support other popular solvers such as ECOS [11] or SDPA [36].
If the problem is not in Dcp form, CvxLean can also help; tactics can be used to
manually guide a verified preDcp transformation of the problem into Dcp form.

Contribution of this paper. The main contribution is an extensible frame-
work for automating preDcp transformations. Doing these manually is difficult
since the kinds of transformation steps that might be used are quite varied,
the target problem is not always obvious, and even if some target problem is
guessed at, it might be tedious to figure out the rewrites to get there. Further,
it is challenging to organize these steps and orient equalities as rewrite rules in
some simple automated strategy. Instead, we automate the search for a useful
sequence of steps by making use of e-graph rewriting as implemented in egg [34].
E-graphs efficiently represent sets of optimization problems reachable in an itera-
tive deepening search, and e-graph rewriting easily handles bi-directional rewrite
rules. An indication of the flexibility of our approach is that it works for problems
that previously required specialized transformations [2,1] (see Sec. 4).

Our running example. Consider the following problem over a single real
variable:

minimize x

subject to 0.001 ≤ x
1√
x
≤ exp(x)

4 https://github.com/verified-optimization/CvxLean/

https://github.com/verified-optimization/CvxLean/

Transforming optimization problems into Dcp form 3

This problem is not in Dcp form, as Dcp requires that the right-hand side of
the second inequality is a concave function, whereas exp(x) is convex. However,
the equivalent problem:

minimize x

subject to 0.001 ≤ x
exp(−x) ≤

√
x

is Dcp, as exp(−x) is convex and
√
x is concave, which allows Dcp to recognize

the constraint exp(−x) ≤
√
x as defining a convex set. Automatically trans-

forming the first problem into the second one is challenging, as the second is not
obviously simpler in some sense than the first. One possible sequence of rewrite
steps to transform the second constraint is:

1√
x
≤ exp(x) 1 ≤ exp(x)

√
x 1 ≤

√
x exp(x)

1

exp(x) ≤
√
x exp(−x) ≤

√
x

Notice that the third rewrite involves a rewrite rule a ≤ bc a/c ≤ b (condi-
tional on c > 0) which is the reverse of the rule used in the first rewrite.

For automating rewrites like these, sometimes it is possible to define a cost
metric which decreases as one applies transformation steps towards some desired
end form, and which then can guide the selection and orientation of rewrites.
Here, there is no such obvious metric. Moreover, many of the rewrites that will
be needed for other problems could still apply, for example, a ≤ b a− b ≤ 0.
This situation, when there is an absence of a simple strategy for applying rewrite
rules, is exactly when an e-graph rewriting approach is useful.

Outline. In Sec. 2, we give an overview of disciplined convex programming and
e-graphs. Sec. 3 explains how we use e-graph rewriting in egg to discover rewrite
sequences to Dcp-compliant form, and then check these sequences in CvxLean.
In Sec. 4, we present some experimental results and discuss benchmarks derived
from non-convex optimization problems. In Sec. 5, we discuss some related work;
and we conclude with some future work in Sec. 6.

2 Background

In this section, we discuss the relevant background, explaining both the basics
of convex optimization and Dcp, as well as e-graphs and e-graph rewriting.

2.1 Disciplined convex programming

A function f : Rn → R is convex if, for any two points x, y ∈ Rn and any
t ∈ [0, 1], we have f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y). We say f is concave if

4 Fernández Mir et al.

−f is convex, and f is affine if it is both convex and concave. An affine function
can always be expressed as the sum of a linear function and a constant, i.e., it can
be put in form f(x) = a·x+b for some a ∈ Rn and b ∈ R. A set C ⊆ Rn is convex
if, for any two points x, y ∈ C, the line segment joining x and y also lies in C:
∀t ∈ [0, 1], (1− t)x+ ty ∈ C. A set C ⊆ Rn is affine if, for any two distinct points
x, y ∈ C, the line through x and y also lies in C: ∀t ∈ R, (1− t)x+ ty ∈ C. Given
an optimization variable x ∈ Rn, convex functions fi : Rn → R for i = 0, . . . , k
and affine functions hi : Rn → R for i = 1, . . . , l, a convex optimization problem
in standard form is defined as follows:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , k

hj(x) = 0, j = 1, . . . , l.

A point x ∈ Rn is feasible if it satisfies all the constraints. The set of feasible
points is always a convex set. A feasible point x is also optimal if, for every other
feasible point y, we have f0(x) ≤ f0(y).

Convex optimization solvers typically work with problems in low-level conic
form. However, most problems that arise in applications are not in conic form.
Dcp [16] is a framework to address the reduction to conic form. Dcp requires
that the fi(x) and hj(x) defining problems be built from a collection of functions
known as atoms. The framework has two key components. Firstly, it has an atom
library holding information on each atom, such as its curvature (whether it is
convex, concave, or affine); how it is non-decreasing, non-increasing, or neither in
each of its arguments; and, when relevant, its graph implementation. The graph
implementation of an atom specifies how to replace each occurrence of the atom
with an equivalent optimization problem in conic form. Secondly, the framework
has a convexity ruleset that determines the curvature of combinations of atoms,
variables, and constants. For example, given an expression e := f(a1, . . . , an)
where f is a convex atom, e is convex if, for each i ∈ {1, . . . , n}, one of the
following is true:
– f is nondecreasing in its ith component & ai is convex.
– f is nonincreasing in its ith component & ai is concave.
– ai is affine.

A problem is in Dcp form if it is constructed using atoms from some given
atom library and can be easily recognised to be convex by using the convexity
rules. For example, with our current library, the constraint exp(x) exp(y) ≤ z is
not Dcp-compliant, as exp(x) exp(y) is considered to be the product of applica-
tions of the exp() atom to x and y, and the product of two convex functions is
not necessarily convex. However, the equivalent exp(x+y) ≤ z is Dcp-compliant,
as exp(x + y) is seen as convex by the convexity rules. Conceivably, one could
add a new atom for exp(x) exp(y), but adding new atoms is significant work, and
expressions such as exp(x) exp(y) are much more easily handled by transforming
them to equivalent expressions that the Dcp rules can work on.

Problems in Dcp form can always be automatically reduced to conic form,
principally by replacing atom occurrences by their graph implementations.

Transforming optimization problems into Dcp form 5

2.2 Equivalence of problems

All the problem transformations considered so far in CvxLean and in our work
reported here are equivalence-preserving. We use a constructive notion of equiva-
lence that requires the explicit specification of maps between the untransformed
and transformed problems. We can then compose maps from a chain of equiva-
lences to map solutions from solvers back into initial problem domains.

Definition 1 (Equivalence). Let P := (fA, csA) be a minimization problem
defined over a domain A, and with objective function f : A→ R and constraints
cs : A→ {⊥,>}, where cs(x) = > if the point x satisfies all the constraints cs,
and cs(x) = ⊥ otherwise. Similarly, let Q := (gB , dsB). We say that P and Q
are equivalent if there exist maps ϕ : A→ B and ψ : B → A such that:

1. ∀x ∈ A. x is optimal in P ⇒ ϕ(x) is optimal in Q.
2. ∀y ∈ B. y is optimal in Q⇒ ψ(y) is optimal in P .

2.3 E-graph-based rewriting systems

Given some language of terms, an e-graph is a data structure that compactly
represents some set of terms drawn from that language and a congruence relation
on that set. E-graphs are used in the standard congruence closure algorithm [23].
In Smt solvers (e.g., [9,8]), they represent congruence relations on ground terms
and support instantiation of quantified assumptions. They have also been re-
purposed to drive compiler optimizations and other applications [29,34].

E-graphs implement equivalence classes of terms that are closed under con-
gruence by making use of a Union-Find data structure [28]. Each equivalence
class or e-class contains a set of e-nodes, with each e-node associated with some
term constructor and a list of child e-classes, one for each child of the con-
structor. If we select some e-node from an e-class c and then recursively select
e-nodes from each of its child classes, we can build from the corresponding term
constructors one of the terms represented by c.

An e-graph can be built for an initial single term and then iteratively ex-
tended by applying rewrite rules to e-nodes. Each application of a rule generates
new e-nodes that are then added to the graph, provided there are no e-nodes
already there representing the same term sets. E-graph modifications can be
instrumented so that, given two terms shown equivalent by some e-graph, a
sequence of rewrite rules that justifies their equivalence can be extracted.

In Fig. 1, we show the first steps of building an e-graph for the running exam-
ple. For simplicity, we focus on the e-graph of the second constraint; in reality, we
build one e-graph for the whole problem. Boxes with dashed outlines represent
e-classes, and boxes with solid outlines represent e-nodes. From a logical point
of view, we always treat the variables we store in e-graphs as Skolem constants,
so all terms represented by an e-graph are ground, as required by formal treat-
ments of e-graphs. To start with, in Fig. 1(a), we have an e-graph for the initial
constraint. Then, in Fig. 1(b) and Fig. 1(c), the e-graph is augmented with new
nodes and classes that represent the right-hand sides of the applied rewrite rules

6 Fernández Mir et al.

(a) Initial e-graph
representing
1/
√

x ≤ exp(x).

(b) After rewriting with
1/
√

x ≤ exp(x)
 1 ≤ exp(x)

√
x.

(c) After rewriting with
1 ≤ exp(x)

√
x

 1 ≤
√

x exp(x).

Fig. 1: E-graph building steps for the running example.

and capture how these right-hand sides are equivalent to the left-hand sides. One
e-graph invariant is that any particular term or set of terms is represented by
at most one e-node or e-class. This is already evident in the first graph, where
there is only one e-class and e-node for the variable x.

The top e-class in the e-graph in Fig. 1(c) represents just the terms that
explicitly appear at the start or that appear after we sequentially apply the two
indicated rules, namely 1/

√
x ≤ exp(x), 1 ≤ exp(x)

√
x and 1 ≤

√
x exp(x). But

in general the e-graph captures many further equivalent terms. For example, if
we have an e-graph for f(a, b) and we rewrite a to a′, we add f(a′, b) to the
e-graph, and then if we rewrite b to b′, the resulting e-graph represents not
only f(a′, b′) but also f(a, b′). Further, in the e-matching [7] process used to
instantiate rewrite rules, the rules’ variables get instantiated with e-classes, and
the right-hand side from a single rewrite rule instantiation, in general, represents
a whole set of new terms, not just one.

The process of iteratively applying a set of rewrites to an initial e-graph
for a single term is sometimes referred to as equality saturation, as rewriting can
continue until no more rules apply. We mostly avoid talking about saturation, as
we terminate rewriting as soon as a Dcp-compliant version of the initial problem
has been found, well before saturation might be achieved.

The egg e-graph rewriting system generalises mechanisms provided in other
e-graph implementations for annotating e-classes with further data. With an e-
class analysis [34], each class is annotated with an element from a partial order.
The order can be thought of as an information order, with higher elements being,
in some sense, more informative. This order must support a join (least upper
bound) operation on pairs of data values. When two e-classes are merged because
a new equality is added to the e-graph, the join operation is used to compute
the data for the merged e-class from that of the two e-classes being merged. It is
also necessary to describe a make operation for creating the data annotation for

Transforming optimization problems into Dcp form 7

a new singleton e-class when it is added to the e-graph. See Sec. 3.4 for examples
of our use of e-class analyses.

3 Automating transforming problems into DCP form

Atomise Initialise e-graph

Rewrite e-graph until
DCP form reached

Generate explanationConstruct proof

Atom
library

Congruence
lemmas

Rewrite
lemmas

Tactics for
rewrite
rules

Rewrite
rules

Interval
arithmetic

rules

Curvature
rules

Condition
tactics

Initial problem p

Transformed problem q

PreDCP
language

def

Lean Egg

Proof of p q

Fig. 2: Architecture of the preDcp tactic.

We automate the transformation using what we call the preDcp tactic. In
Fig. 2, we show the overall architecture of the tactic and the flow of the input
problem through the tactic’s stages. As shown in the diagram, the stages are
divided between Lean and egg. The egg system is written as a Rust library, and
we customise it using wrapper code also written in Rust. Our egg wrapper runs
as a subprocess of the Lean process, and Lean communicates with this subprocess
via standard input and output. In the following subsections, we explain each of
the stages in detail.

3.1 Problem transformation tactics

Top-level tactics for transforming optimization problems in CvxLean are genera-
tive in that, when applied to a problem p, they generate both some transformed
problem p′ and a proof of the equivalence p ≡ p′. In that respect, they resemble
the rewrite conversions originally introduced by Paulson for Cambridge LCF [26].

8 Fernández Mir et al.

These top-level tactics work on goals of form ` p ≡ ?q, where p is a problem
to be transformed and ?q is a meta-variable, implicitly existentially quantified,
which eventually gets instantiated with the final transformed problem after a
sequence of transformation steps. When a top-level tactic is applied to a goal of
form ` p ≡ ?q, the tactic generates a subgoal ` p′ ≡ ?q and a partial proof that,
when applied to a later-derived proof of the subgoal, generates a proof of the
goal. This partial proof uses transitivity to combine the tactic’s proof of ` p ≡ p′
with the subgoal’s proof. Because the form of the subgoal ` p′ ≡ ?q is the same
as that of the goal ` p ≡ ?q, a sequence of transformations can be realised by
simply applying a sequence of these top-level tactics.

One way in CvxLean of running these top-level tactics is by making use of
the equivalence command:

equivalence eqv/q : p := by t1 ; t2 ; . . . ; tn

Here, p is some Lean expression for the initial problem, and eqv and q are identi-
fiers. When Lean processes this command, the top-level problem transformation
tactics t1 . . . tn are run in sequence, a reflexivity rule causes ?q in the final sub-
goal ` pn ≡ ?q to be instantiated to pn and closes this subgoal, the identifier q
gets bound to the instantiated ?q, i.e., to pn, and the identifier eqv gets bound
to a proof of ` p ≡ q, i.e., eqv names this theorem.

The implementation of our problem transformation tactics is similar to that
of Lean’s conversion-mode tactics 5, though the current Lean distribution does
not provide commands such as this equivalence command which allow the gen-
erative capabilities to be accessed by the user.

3.2 Rephrasing using atoms

Our current preDcp tactic works with a subset of atoms currently supported by
CvxLean. This subset allows us to handle problems defined by the grammar:

prob ::= (expr, {constr}∗)
constr ::= expr = expr

| expr ≤ expr

expr ::= c a numerical constant, in F \ {−∞,∞,NaN}
| var(s) a variable, where s is a string
| u(expr) u ∈ {−(·), (·)−1, | · |,

√
·, log, exp}

| b(expr, expr) b ∈ {+, −, ×, /, ˆ, min, max}
| cu(expr) cu ∈ {xexp, entr}
| cb(expr, expr) cb ∈ {qol, geo, lse, norm2}

We distinguish simple unary atoms (u) and binary atoms (b) from composed
unary atoms (cu) and composed binary atoms (cb), as the latter can be expressed
5 https://leanprover.github.io/theorem_proving_in_lean4/conv.html

https://leanprover.github.io/theorem_proving_in_lean4/conv.html

Transforming optimization problems into Dcp form 9

in terms of simple atoms. The curvature analysis used for Dcp problem recogni-
tion can make use of curvature properties of these composed atoms, whereas the
curvature analysis fails on the expansion of these atoms. The atom lse(x, y) (log-
sum-exp) corresponds to log(exp(x) + exp(y)), xexp(x) to x exp(x), entr(x) to
−x log(x), qol(x, y) (quadratic over linear) to x2/y, geo(x, y) (geometric mean)
to √xy, and norm2(x, y) to

√
x2 + y2.

The first step taken by the preDcp tactic is to convert a problem expressed
using definitions from Lean’s library into a form in this grammar. A similar prob-
lem conversion is used by the front-end of the CvxLean tactic that implements
the automatic transformation of Dcp-compliant problems into conic form (See
Sec. 2.1). In that case, the conversion makes choices of atoms to ensure Dcp
curvature checks are satisfied. With the preDcp tactic, we bypass these checks,
and the conversion is driven just by syntactic structure; the whole point of the
preDcp tactic is that it takes problems not satisfying these checks and trans-
forms them into equivalent versions that do satisfy the checks.

This conversion distinguishes simple constraints, constraints on single domain
variables of form x ≤ c, x < c, c ≤ x, c < x, x = c where c is a constant, from the
rest of the problem constraints. Simple constraints are used later in the e-graph
rewriting process to check the conditions of conditional rewrite rules.

3.3 Initialising e-graphs

The egg system requires declarations of all term constructors, so we provide it
with declarations of the constructors in the preDcp language defined above. By
drawing on these declarations, our egg wrapper can create an initial e-graph
from a problem sent over from Lean.

3.4 Rewriting until DCP form reached

We have egg repeatedly apply rewrite rules until either we find we have reached
a problem in Dcp form or we reach some limit. Rewrites are applied by egg
in iterations. In each iteration egg first looks for all matches of rewrite rules to
the current problem e-graph, and then adds the results of the rewrites to the
e-graph. After this, at the end of each iteration, we check whether the e-graph
contains a problem in Dcp form. The limit we currently use is on the size of
the e-graph. We set it much higher than is needed to solve all our benchmark
problems (see Sec. 4). If we reach this limit, the preDcp tactic fails.

As far as we know, this use of e-graph rewriting to discover an expression
of a particular form that is equivalent to an initial expression, rather than to
find an equivalent expression that optimizes some metric, is novel. See Sec. 5 for
more on this point.

Rewrite rules. We have to configure egg with the set of rules we want it to
try. egg is a generic tool which relies on the user defining a term language and
rewrite rule set appropriate to the domain they are interested in. At the time of

10 Fernández Mir et al.

writing, we have 68 rules (51 of which are bidirectional). There are essentially
three types of rules:
1. Equality rewrites that operate on real-valued terms (terms generated by the

expr non-terminal in our grammar).
2. If-and-only-if rewrites that operate on propositions (terms generated by the

constr non-terminal in our grammar).
3. Problem equivalence rewrites that operate on whole problems generated by

the root non-terminal prob in our grammar. All such rewrites that we cur-
rently consider only change the objective function and do not touch the
constraints.
We show some rules that are relevant to our running example. Two rules in

the first class are:

∀x, y ∈ R. xy yx, ∀x ∈ R.
1

exp(x) ! exp(−x).

In the above and following rewrite rules, we use or ! rather than the ap-
propriate equivalence relation in order to explicitly show the intended rewrite
direction or directions. A rule in the second class is:

∀a, b, c ∈ R. c > 0⇒
(a
c
≤ b! a ≤ bc

)
This is an example of a conditional rewrite rule; it only should be applied when
the condition c > 0 can be inferred.

There are no third-class rules that apply to our example, but they are particu-
larly interesting as they are specific to optimization problems. We have identified
two such rules, which involve, respectively, applying a logarithm to the objective
function and squaring the objective function:

∀f, cs. (∀x. cs(x)⇒ f(x) > 0)⇒ (f, cs) (λx.log(f(x)), cs)

∀f, cs. (∀x. cs(x)⇒ f(x) ≥ 0)⇒ (f, cs)
(
λx.(f(x))2, cs

)
These rules are instances of a more-general rule that applies any strictly-monotone
function to the objective function.

E-class analysis for rule conditions. Our rewrite rules currently involve
checking the conditions v > 0, v ≥ 0, v 6= 0, v ≤ 0, v < 0, v ≤ w and v ∈ N
for variables v, w that occur in the rewrite rule match patterns. To check these
conditions we use an e-graph analysis that computes for each e-class and node in
the e-graph an interval that contains the possible values of the e-class or node.
The lower and upper bound of each interval can each be open or closed, and we
allow ±∞ bounds [19]. Intervals for problem domain variables are inferred from
simple constraints (See Sec. 3.2). Rules are provided for computing the interval
of each e-graph node for a real-valued expr constructor from the intervals for
its arguments. The interval for an e-class is computed as the intersection of the
intervals of the nodes in the class.

These interval calculations have been sufficient for discharging the side con-
ditions we have come across so far in examples.

Transforming optimization problems into Dcp form 11

E-class analysis for detecting DCP form An optimization problem is in
Dcp form when we can check using curvature rules that the objective function
is a convex function and each constraint defines a convex set. To detect this, we
use an e-class analysis that computes a curvature value for each e-class and node
in the e-graph. See Fig. 3 for the partial orders we use for these values.

UnknownFn UnknownSet UnknownProb

ConvexFn ConcaveFn ConvexSet ConvexProb

AffineFn AffineSet LinearProb

ConstantFn

Fig. 3: Hasse diagrams for orderings of curvatures of real-valued (expr) terms,
proposition-valued (constr) constraints, and whole problem (prob) terms. Se-
mantically, each label represents a set, and each ordering corresponds to set
inclusion on the representations.

Problem domain variables are given AffineFn curvature and constants
ConstantFn. For each constructor in the preDcp grammar, we have a cur-
vature rule which is used to compute the curvature of nodes labelled with the
constructor from the curvature of the child classes. These rules embody com-
position rules such as that mentioned at the end of Sec. 2.1. For example, a
node for exp(x) is labelled with ConvexFn if the class for x is labelled with
ConvexFn or better 6, and a node for x ≤ y is labelled with ConvexSet if the
class for x is labelled with ConvexFn or better, and the class for y is labelled
with ConvcaveFn or better.

For computing the curvature of a class from that of its nodes, the meet
(greatest-lower-bound) operation is used, which corresponds to intersecting the
sets that each curvature element represents. A problem is considered to be in Dcp
form if the e-class in the graph for the problem is labelled with ConvexProb
or better.

Once we know that the e-graph contains a problem term in Dcp form, we
need to extract a specific such term. To help us do this, we store along with each
curvature label for a node or class a particular term with that curvature, and
we augment the curvature computation rules to calculate such terms.

A subtlety occurs when merging two e-classes of an e-graph, one labelled
ConvexFn and one labelled ConcaveFn. Using the meet on the order results
in the label AffineFn. While we then know that all the terms contained in
the two e-classes must mathematically be affine, we do not have at hand any
term that can be checked as being affine by the Dcp curvature rules. We need
such a term because our eventual goal is to derive an e-graph that contains an
6 Here, “X or better” means “X or any element below X in the relevant order”.

12 Fernández Mir et al.

optimization problem that can be recognised to be Dcp-compliant by the Dcp
rules. Our current pragmatic solution is for merge to not use the mathematical
meet, but rather to simply pick the curvature and corresponding term of one
of the classes. This is sound, the curvature labelling of the resulting e-class is
mathematically correct, but it is not ideal. We reason that this is acceptable
because we expect that simplifications from future applied rewrite rules will
eventually result in the further merging of a class labelled with AffineFn, in
which case we regain the desired invariant that the curvature labelling of a class
is the same, no matter in what order the curvatures of the nodes in the class are
pairwise combined. We do see examples with our benchmarks (see Sec. 4) where
this pragmatic solution is needed and, so far, it has always worked.

3.5 Generating equivalence explanations

Once we have a transformed version of the initial problem in Dcp form, we ask
egg to generate an explanation for why the initial and transformed problems
are equivalent [24,12]. This explanation takes the form of a sequence of steps,
each a single application of one of the rewrite rules. For each step, information
is provided on the rewrite rule name, whether, for bidirectional rules, the rule
was applied in a forward or reverse direction, the position in the intermediate
problem generated by the previous steps at which the rule was applied, and the
instantiated left and right-hand sides of the rule.

3.6 Replaying explanations as proofs in Lean

Using Lean 4’s macro system [31], the initial problem of our running example
can be expressed in CvxLean in a readable format and bound to a variable p with
the following text:
def p : Minimization R R :=

optimization (x : R)
minimize (x)
subject to

h1 : 1 / 1000 ≤ x
h2 : 1 / (sqrt x) ≤ exp x

The type Minimization R R of problem p indicates that the problem has a real-
valued domain and the objective function has a real-valued range. After the
optimization keyword, the (x : R) indicates that the problem domain has a
single component that is referred to using the variable x.

We then can run the preDcp tactic with:
equivalence eqv/q : p := by

pre_dcp

#print q
-- def q : Minimization R R :=
-- optimization (x : R)

Transforming optimization problems into Dcp form 13

-- minimize x
-- subject to
-- h1 : 1 / 1000 ≤ x
-- h2 : exp (-x) ≤ sqrt x

The commented code shows the output of the #print command.
Each step of the explanation received from egg is justified in Lean using a

suitable call of a top-level problem transformation tactic. Internally, this tactic
first reduces showing the equivalence of the problems before and after the step
to showing the equivalence of just one of the problem components (either the
objective function or one of the constraints). We can always do this, as each
rewrite step identified using egg involves the application of some rewrite rule
to a single component. We do not currently have rewrite rules that work with
multiple components, such as rewriting one constraint using an equality from
another constraint or adding or removing constraints. For example, the first
step of the explanation generated by egg for transforming our running example
problem involves transforming the constraint h2. The Lean congruence lemma7

def rewrite_constraint_2_last (hrw : ∀ x, c1 x → (c2 x ↔ c2' x)) :
〈f, fun x => c1 x ∧ c2 x〉 ≡ 〈f, fun x => c1 x ∧ c2' x〉

reduces the before-and-after-step problem equivalence to

x: R
h1: 1 / 1000 ≤ x
` 1 / sqrt x ≤ exp x ↔ 1 ≤ sqrt x * exp x

The assumption of constraint h1 here is essential for later discharging a condition
of the lemma used to prove this goal. At this point, CvxLean needs to know what
rewrite in the Lean library corresponds to the egg rewrite rule div_le_iff:

∀a, b, c ∈ R. c > 0⇒
(a
c
≤ b! a ≤ bc

)
Using a custom Lean command, we set up associations between these rewrite
rule names on the egg side and corresponding lemmas and tactics on the Lean
side. A slightly simplified version of the command that associates the div_le_iff
rule to a tactic is:

register_rule_to_tactic "div_le_iff" := apply div_le_iff (by positivity!)

Here, the Lean lemma has the same name div_le_iff, but this is not always
the case. The positivity! is a Lean tactic that should be used to discharge the
rewrite rule condition. It is a custom extension of Lean’s positivity tactic which
solves arithmetic goals and can support, to some extent, non-linear expressions
and transcendental functions. Ideally, an interval arithmetic tactic should be
used here, mimicking the logic of the interval arithmetic e-class analysis we use.
7 We use a def rather than lemma declaration here for constructive type-theoretic rea-

sons; it enables us to extract from equivalence proofs functions for mapping solutions
to initial problem domains.

14 Fernández Mir et al.

For now, with the strictly weaker positivity! and related arithmetic tactics, we
have been able to handle the conditions of all the examples we have considered.

Currently, there is no static checking of this association between egg rules and
Lean rewrite rules; if there is a mistake, it likely would not manifest itself until it
causes the replay in Lean of a egg-generated proof to fail. Some checking could
be done, or, better, further development could simplify matters by requiring
rewrite rules to only be specified in Lean, and having the egg versions derived
from these Lean versions.

The example div_le_iff rule above is applied at the top level of a constraint
component of a problem. In general, the needed rule is applied at some interior
point of the component, and an extra congruence lemma is applied first to set
up a subgoal expressing the required equality at this interior point.

4 Experiments and discussion

We currently have a set of 145 problems that we use for testing and evaluat-
ing our preDcp tactic: 114 are unit tests, 4 are derived from exercises for a
convex optimization course at Stanford, 10 come from an online Dcp quiz, and
17 derive from Geometric Programming (GP) and Quasi-Convex Programming
(QCP) problems. GP and QCP are classes of optimization problems that can
be transformed into convex optimization problems. Just as there is Disciplined
Convex Programming, so there is Disciplined GP [2] and Disciplined QCP [1].
The CVXPY tool [10] includes specially designed sets of rules to support both
Dgp and Dqcp. In many cases, our preDcp tactic is able to transform prob-
lems in these further classes into Dcp form once a CvxLean change-of-variables
tactic is first called, without otherwise any special further sets of rules. More
specifically, we can solve all GPs after a manual change of variables and many
Dqcp-compliant problems that are mathematically convex.

We cannot handle general quasiconvex problems as these require extra ma-
chinery for solving a series of Dcp problems. Regarding GPs, one could hypo-
thetically add a change-of-variables rule to the rule set used by preDcp tactic,
so this step, too, would be automated. We have not explored this yet. The chal-
lenge is that changing variables is a creative step that hugely increases branching
in the search for a Dcp-compliant problem and would easily make the search
intractable. Intelligent heuristics would need to be designed to carefully select
and control the variable changes. Apart from these strong limitations, there are
also potential practical limitations with expressions such as (√x1 + · · ·+√xn)2

with xi > 0 (which can be rewritten into a Dcp concave expression), where AC
rules become an issue for large n. We speculate that these are rare in practice.

In assembling the set of problems that were not unit tests, we were striving
to find examples that were representative of problems that come up in practice.
These problems heavily guided our selection of rewrite rules and motivated the
set of atoms that we currently support.

In Tab. 1, we show some statistics generated by egg and CvxLean when run
on the most challenging of our benchmark problems. We also include our running

Transforming optimization problems into Dcp form 15

Benchmark Run-time Term size #nodes #steps #iters #rewritesegg total before after
gp4 1439 ms 3170 ms 37 41 22059 31 10 26338
gp5 1340 ms 3265 ms 41 45 24452 38 10 24995
gp8 1083 ms 8193 ms 93 72 19327 79 9 19755
gp9 5799 ms 15463 ms 97 104 41012 123 19 36674
agp3 1129 ms 2819 ms 40 46 19860 29 10 23033
qcp4 344 ms 1711 ms 22 19 10847 17 5 9426
stan3 101 ms 1033 ms 26 31 2572 20 4 2319
stan4 291 ms 1789 ms 34 48 7754 38 5 6458
quiz9 113 ms 614 ms 13 9 1868 12 4 2216
example 16 ms 249 ms 13 15 185 3 2 132

Table 1: Results on selected problems.

Run-time egg – run-time of egg when running the preDcp tactic; Run-time total –
total run-time of the preDcp tactic; Term size before / after – size of the problem term
before and after running the preDcp tactic; #nodes – size of the final e-graph from
which the transformed problem is extracted; #steps – number of rewrite steps in the
explanation produced by egg; #iters – number of iterations of the core egg algorithms
needed; #rewrites – number of rewrite rule instances used by egg to grow the e-graph.

example on the last line. The experiments were performed on a 2021 Macbook
Pro with an Apple M1 Pro and 16GB RAM.

As we can see, the time spent on the Lean side (total - egg) is consistently
higher. On average, for all 145 problems, the time spent for each tactic run is
around 4.5× that spent in egg; the performance bottleneck is on the Lean side,
primarily in proof reconstruction.

Given the number of steps required on these selected problems, the benefits
of the automation provided by egg are clear. It would be very tedious for a
CvxLean user to write tactic scripts for the problem transformations that apply
relevant rewrite rules one-by-one, let alone figure out which rules are needed to
reach problems in Dcp-compliant form.

Observe that the size of the resulting problem term (the size of its AST) does
not always decrease, which is further evidence that this transformation is not a
simplification.

The total number of steps is much higher than the number of iterations
because egg explores rewrites on independent parts of the initial problem in
parallel. With the basic egg rewriting algorithm, the number of iterations corre-
sponds to the length of the maximum sub-sequence of rewrite rule steps where
each rule’s application depends on the result of some earlier rule. In practice,
further iterations can be needed because egg curtails the growth of the e-graph
by periodically disabling for a few iterations rules that get high use.

E-graph rewriting makes tractable the search of the space of terms equivalent
to some initial term by an arbitrary set of rewrite rules, a search that, naively,
would be utterly intractable.

16 Fernández Mir et al.

5 Related work

There are convex optimization modeling frameworks in a number of languages.
Even though they require the input problem to comply with the rules of Dcp
(except for special cases such as Dgp or Dqcp), they are the main point of ref-
erence for our work. The main tool discussed in this paper is CVXPY [10], written
in Python. It has a large atom library, relevant examples for many applications,
and is maintained by an active developer community. Other popular implemen-
tations include CVX [15] in Matlab, CVXR [13] in R, and Convex.jl [30] in Julia.
The main difference between these frameworks and CvxLean is that, in CvxLean,
problem definitions are mathematically precise, which makes verifying the proce-
dure presented here possible. An advantage that applies in particular for expert
users of these tools is that one can confidently extend CvxLean (e.g., add a new
transformation step) since any error will result in failure to prove equivalence.

This work focuses on the correctness of the transformations, but there is an-
other related line of research that is worth highlighting that involves verifying
the numerical certificates output by the solver. ValidSDP [21] is a tool written in
Coq where polynomial positivity queries are rephrased as sum-of-squares prob-
lems and solved using semidefinite programming. This requires formal reasoning
about floating-point errors. There is also a comparable tactic based on sum-of-
squares in Hol Light [17]. A different approach is taken by VSDP [18], a Matlab
package where rigorous computations of optimality bounds and solution enclo-
sures are performed using interval arithmetic.

The other angle taken by our project is using e-graphs to solve a problem that
we have managed to rephrase as a rewriting problem. E-graphs were originally
designed for automated theorem proving [23] and are currently used in a crucial
way by Smt solvers [7]. In this setting, it is often necessary for an equivalence
between two terms established by the e-graph to be justified with a sequence of
rewrite rule applications [24,12], usually called an explanation. In our work, we
use explanations to reconstruct Lean proofs of equivalence between optimization
problems expressed in our restricted language. E-graphs have also been used for
generic congruence closure algorithms in interactive theorem provers, where the
challenge is making them work with the complex underlying languages like Lean’s
dependent type theory [27] or cubical Agda’s homotopy type theory [14].

All of these works use e-graphs for verification through congruence closure,
witnessing the equivalence (or congruence) of terms, but not considering any
analysis or cost minimization on the e-graphs. In contrast, in our work here, we
use both e-class analysis and extraction [34] to find representatives of the equiv-
alence class that are in Dcp form. In this sense, our work is more closely related
to other uses of equality saturation that come from program optimization [29],
where equivalence is necessary, but a particular property of the equivalence class
is sought. Frameworks like Herbie [25], Diospyros [32], Tensat [37] or Spores [33]
all use e-graphs and equality saturation to optimize some performance metric
of programs (or hardware). In all these cases, the transformation to a minimum
cost term – say, identifying a program with optimum performance – is always
acceptable. However, to the best of our knowledge, our use case is the first where

Transforming optimization problems into Dcp form 17

inspection of the minimum cost term in the e-graph helps one decide whether or
not a transformation is even acceptable.

6 Conclusion and future work

We have introduced a system that is able to transform optimization problems
into equivalent Dcp-compliant forms in a manner where all transformation steps
are checked in a theorem prover. Using egg, we are able to simply list all the
rewrite rules that are potentially useful without worrying about their individual
effect, thanks to the non-destructive nature of e-graphs. An alternative approach
would be to use a tool like aesop [20], which we experimented with, fine-tuning
the priority of every rewrite rule depending on how likely it is to result in a
Dcp-compliant form. In practical terms, however, it is hard to know a priori
which rules will be useful, and we have shown that considering all equivalent
problems at once works efficiently for several interesting examples.

Next steps include extending the preDcp language to include matrix and
vector atoms, which are widely used in CVXPY, and binding operators such as
summations. Currently, if the preDcp tactic fails, the user gets no feedback. We
are considering how instead to show the user why the tactic’s best effort still fails
to be in Dcp form. Customization for new constructors and new rewrite rules
could be simplified by requiring this customization just on the Lean side, and
then have Lean take care of suitably configuring the egg side. Using egglog [38],
which unifies Datalog with equality saturation, instead of egg could offer en-
hanced opportunities for checking conditions.

A major project would be porting and extending the ValidSDP work in Coq
(see Sec. 5) on formally verifying solutions provided by solvers, taking account
of floating-point errors. If one also formally checked bounds on the floating-point
errors introduced by mapping solver solutions back to initial problem domains,
one then would have formal guarantees about the solutions returned by CvxLean.
Alternatively, one could use the VSDP solver (again see Sec. 5), accept its reduced
performance compared to state-of-the-art solvers, trust the solution intervals it
computes, and use interval arithmetic for mapping back to initial domains. This
would be much less work than porting and extending ValidSDP, though the
degree of assurance in the correctness of solutions would be less. While both
these options could be desirable, we argue that there is much value in our focus
on ensuring the correctness of problem transformations, even without numerical
verification of solutions.

We are keen to have members of the convex optimization community give
CvxLean a try and are improving robustness and documentation to make this
feasible in the coming months. To date, all our most challenging benchmarks are
derived from academic courses on optimization. With contact with community
members, we hope to see CvxLean and our preDcp tactic exercised on real-world
industrial examples.

18 Fernández Mir et al.

References

1. Agrawal, A., Boyd, S.: Disciplined quasiconvex programming. Optimization Letters
14, 1643–1657 (2020). https://doi.org/10.1007/s11590-020-01561-8

2. Agrawal, A., Diamond, S., Boyd, S.: Disciplined geometric programming. Opti-
mization Letters 13, 961–976 (2019). https://doi.org/10.1007/s11590-019-01422-z

3. Andersen, E.D., Andersen, K.D.: The MOSEK interior point optimizer for linear
programming: an implementation of the homogeneous algorithm. In: High perfor-
mance optimization, pp. 197–232. Springer (2000). https://doi.org/10.1007/978-1-
4757-3216-0 8

4. Bentkamp, A., Fernández Mir, R., Avigad, J.: Verified reductions for optimization.
In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 74–92. Springer (2023). https://doi.org/10.1007/978-3-
031-30820-8 8

5. Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge University Press
(2004). https://doi.org/10.1017/CBO9780511804441

6. mathlib Community, T.: The Lean mathematical library. p. 367–381. CPP
2020, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3372885.3373824

7. De Moura, L., Bjørner, N.: Efficient e-matching for SMT solvers. In: Automated
Deduction–CADE-21: 21st International Conference on Automated Deduction Bre-
men, Germany, July 17-20, 2007 Proceedings 21. pp. 183–198. Springer (2007).
https://doi.org/10.1007/978-3-540-73595-3 13

8. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3 24

9. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for pro-
gram checking. Journal of the ACM (JACM) 52(3), 365–473 (2005).
https://doi.org/10.1145/1066100.1066102

10. Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for con-
vex optimization. Journal of Machine Learning Research 17(83), 1–5 (2016)

11. Domahidi, A., Chu, E., Boyd, S.: ECOS: An SOCP solver for embedded sys-
tems. In: 2013 European control conference (ECC). pp. 3071–3076. IEEE (2013).
https://doi.org/10.23919/ECC.2013.6669541

12. Flatt, O., Coward, S., Willsey, M., Tatlock, Z., Panchekha, P.: Small proofs from
congruence closure. In: 2022 Formal Methods in Computer-Aided Design (FM-
CAD). pp. 75–83. IEEE (2022). https://doi.org/10.34727/2022/isbn.978-3-85448-
053-2 13

13. Fu, A., Narasimhan, B., Boyd, S.: CVXR: An R package for disci-
plined convex optimization. Journal of Statistical Software 94, 1–34 (2020).
https://doi.org/10.18637/jss.v094.i14

14. Gjørup, E.H., Spitters, B.: Congruence closure in cubical type theory. In: Work-
shop on Homotopy Type Theory/Univalent Foundations. https://www.cs.au.dk/
˜spitters/Emil.pdf (2020)

15. Grant, M., Boyd, S.: CVX: MATLAB software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx (Mar 2014)

16. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. Global optimization:
From theory to implementation pp. 155–210 (2006). https://doi.org/10.1007/0-
387-30528-9 7

https://doi.org/10.1007/s11590-020-01561-8
https://doi.org/10.1007/s11590-019-01422-z
https://doi.org/10.1007/978-1-4757-3216-0_8
https://doi.org/10.1007/978-1-4757-3216-0_8
https://doi.org/10.1007/978-3-031-30820-8_8
https://doi.org/10.1007/978-3-031-30820-8_8
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.23919/ECC.2013.6669541
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13
https://doi.org/10.18637/jss.v094.i14
https://www.cs.au.dk/~spitters/Emil.pdf
https://www.cs.au.dk/~spitters/Emil.pdf
http://cvxr.com/cvx
https://doi.org/10.1007/0-387-30528-9_7
https://doi.org/10.1007/0-387-30528-9_7

Transforming optimization problems into Dcp form 19

17. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schneider,
K., Brandt, J. (eds.) Theorem Proving in Higher Order Logics, 20th International
Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007, Pro-
ceedings. Lecture Notes in Computer Science, vol. 4732, pp. 102–118. Springer
(2007). https://doi.org/10.1007/978-3-540-74591-4 9

18. Härter, V., Jansson, C., Lange, M.: VSDP: A MATLAB toolbox for verified
semidefinite-quadratic-linear programming. Optimization Online (2012), https:
//optimization-online.org/?p=12271

19. Hickey, T.J., Ju, Q., van Emden, M.H.: Interval arithmetic: From
principles to implementation. J. ACM 48(5), 1038–1068 (2001).
https://doi.org/10.1145/502102.502106

20. Limperg, J., From, A.H.: Aesop: White-box best-first proof search for Lean. In:
Proceedings of the 12th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs. pp. 253–266 (2023). https://doi.org/10.1145/3573105.3575671

21. Martin-Dorel, É., Roux, P.: A reflexive tactic for polynomial positivity using
numerical solvers and floating-point computations. In: Bertot, Y., Vafeiadis, V.
(eds.) Certified Programs and Proofs (CPP) 2017. pp. 90–99. ACM (2017).
https://doi.org/10.1145/3018610.3018622

22. de Moura, L., Ullrich, S.: The Lean 4 theorem prover and programming language.
In: Automated Deduction–CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, July 12–15, 2021, Proceedings 28. pp. 625–635. Springer
(2021). https://doi.org/10.1007/978-3-030-79876-5 37

23. Nelson, G., Oppen, D.C.: Fast decision procedures based on congru-
ence closure. Journal of the ACM (JACM) 27(2), 356–364 (1980).
https://doi.org/10.1145/322186.322198

24. Nieuwenhuis, R., Oliveras, A.: Proof-producing congruence closure. In: Interna-
tional Conference on Rewriting Techniques and Applications. pp. 453–468. Springer
(2005). https://doi.org/10.1007/978-3-540-32033-3 33

25. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically im-
proving accuracy for floating point expressions. ACM SIGPLAN Notices 50(6),
1–11 (2015). https://doi.org/10.1145/2813885.2737959

26. Paulson, L.C.: A higher-order implementation of rewriting. Sci. Comput. Program.
3(2), 119–149 (1983). https://doi.org/10.1016/0167-6423(83)90008-4

27. Selsam, D., de Moura, L.: Congruence closure in intensional type theory. In:
Automated Reasoning: 8th International Joint Conference, IJCAR 2016, Coim-
bra, Portugal, June 27–July 2, 2016, Proceedings 8. pp. 99–115. Springer (2016).
https://doi.org/10.1007/978-3-319-40229-1 8

28. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of
the ACM (JACM) 22(2), 215–225 (1975). https://doi.org/10.1145/321879.321884

29. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a new ap-
proach to optimization. In: Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. pp. 264–276 (2009).
https://doi.org/10.1145/1480881.1480915

30. Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Con-
vex optimization in Julia. In: 2014 First Workshop for High Performance
Technical Computing in Dynamic Languages. pp. 18–28. IEEE (2014).
https://doi.org/10.1109/HPTCDL.2014.5

31. Ullrich, S., de Moura, L.: Beyond notations: Hygienic macro expansion for the-
orem proving languages. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Auto-
mated Reasoning. pp. 167–182. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-51054-1 10

https://doi.org/10.1007/978-3-540-74591-4_9
https://optimization-online.org/?p=12271
https://optimization-online.org/?p=12271
https://doi.org/10.1145/502102.502106
https://doi.org/10.1145/3573105.3575671
https://doi.org/10.1145/3018610.3018622
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1145/322186.322198
https://doi.org/10.1007/978-3-540-32033-3_33
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1016/0167-6423(83)90008-4
https://doi.org/10.1007/978-3-319-40229-1_8
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1109/HPTCDL.2014.5
https://doi.org/10.1007/978-3-030-51054-1_10

20 Fernández Mir et al.

32. VanHattum, A., Nigam, R., Lee, V.T., Bornholt, J., Sampson, A.: Vec-
torization for digital signal processors via equality saturation. In: Proceed-
ings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. pp. 874–886 (2021).
https://doi.org/10.1145/3445814.3446707

33. Wang, Y.R., Hutchison, S., Suciu, D., Howe, B., Leang, J.: SPORES:
sum-product optimization via relational equality saturation for large
scale linear algebra. Proc. VLDB Endow. 13(11), 1919–1932 (2020).
https://doi.org/10.14778/3407790.3407799, http://www.vldb.org/pvldb/vol13/
p1919-wang.pdf

34. Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha, P.: egg:
Fast and extensible equality saturation. Proceedings of the ACM on Programming
Languages 5(POPL), 1–29 (2021). https://doi.org/10.1145/3434304

35. Wright, M.: The interior-point revolution in optimization: history, recent develop-
ments, and lasting consequences. Bulletin of the American mathematical society
42(1), 39–56 (2005). https://doi.org/10.1090/S0273-0979-04-01040-7

36. Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA
6.0 (semidefinite programming algorithm 6.0). Optimization Methods and Software
18(4), 491–505 (2003). https://doi.org/10.1080/1055678031000118482

37. Yang, Y., Phothilimthana, P., Wang, Y., Willsey, M., Roy, S., Pienaar, J.: Equality
saturation for tensor graph superoptimization. Proceedings of Machine Learning
and Systems 3, 255–268 (2021), https://proceedings.mlsys.org/paper_files/
paper/2021/file/cc427d934a7f6c0663e5923f49eba531-Paper.pdf

38. Zhang, Y., Wang, Y.R., Flatt, O., Cao, D., Zucker, P., Rosenthal, E., Tatlock,
Z., Willsey, M.: Better together: Unifying Datalog and equality saturation. Pro-
ceedings of the ACM on Programming Languages 7(PLDI), 468–492 (2023).
https://doi.org/10.1145/3591239

https://doi.org/10.1145/3445814.3446707
https://doi.org/10.14778/3407790.3407799
http://www.vldb.org/pvldb/vol13/p1919-wang.pdf
http://www.vldb.org/pvldb/vol13/p1919-wang.pdf
https://doi.org/10.1145/3434304
https://doi.org/10.1090/S0273-0979-04-01040-7
https://doi.org/10.1080/1055678031000118482
https://proceedings.mlsys.org/paper_files/paper/2021/file/cc427d934a7f6c0663e5923f49eba531-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/cc427d934a7f6c0663e5923f49eba531-Paper.pdf
https://doi.org/10.1145/3591239

	Transforming Optimization Problems into Disciplined Convex Programming Form

