
Verifying Peephole Rewriting In SSA Compiler IRs1

Siddharth Bhat # �2

Cambridge University, United Kingdom3

Alex Keizer #�4

Cambridge University, United Kingdom5

Chris Hughes #6

University of Edinburgh, United Kingdom7

Andrés Goens # �8

University of Amsterdam, Netherlands9

Tobias Grosser # �10

Cambridge University, United Kingdom11

Abstract12

There is an increasing need for domain-specific reasoning in modern compilers. This has fueled13

the use of tailored intermediate representations (IRs) based on static single assignment (SSA), like14

in the MLIR compiler framework. Interactive theorem provers (ITPs) provide strong guarantees15

for the end-to-end verification of compilers (e.g., CompCert). However, modern compilers and16

their IRs evolve at a rate that makes proof engineering alongside them prohibitively expensive.17

Nevertheless, well-scoped push-button automated verification tools such as the Alive peephole18

verifier for LLVM-IR gained recognition in domains where SMT solvers offer efficient (semi) decision19

procedures. In this paper, we aim to combine the convenience of automation with the versatility of20

ITPs for verifying peephole rewrites across domain-specific IRs. We formalize a core calculus for21

SSA-based IRs that is generic over the IR and covers so-called regions (nested scoping used by many22

domain-specific IRs in the MLIR ecosystem). Our mechanization in the Lean proof assistant provides23

a user-friendly frontend for translating MLIR syntax into our calculus. We provide scaffolding for24

defining and verifying peephole rewrites, offering tactics to eliminate the abstraction overhead of25

our SSA calculus. We prove correctness theorems about peephole rewriting, as well as two classical26

program transformations. To evaluate our framework, we consider three use cases from the MLIR27

ecosystem that cover different levels of abstractions: (1) bitvector rewrites from LLVM, (2) structured28

control flow, and (3) fully homomorphic encryption. We envision that our mechanization provides a29

foundation for formally verified rewrites on new domain-specific IRs.30

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its31

engineering → Semantics; Computing methodologies → Theorem proving algorithms; Theory of32

computation → Rewrite systems33

Keywords and phrases compilers, semantics, mechanization, MLIR, SSA, regions, peephole rewrites34

Digital Object Identifier 10.4230/LIPIcs.ITP.2024.2335

Supplementary Material Software: https://zenodo.org/records/1151973936

Funding This project has received funding from the European Union’s Horizon EUROPE research37

and innovation program under grant agreement no. 101070374 (CONVOLVE).38

Acknowledgements We thank Sébastien Michelland and Sebastian Ullrich for their early help in39

this project and feedback, as well as Anton Lorenzen for his helpful feedback.40

1 Introduction41

Static single assignment (SSA) [30] is the workhorse of modern compilers such as LLVM [16].42

A key optimization that is enabled by SSA is to syntactically match a program pattern, and43

© Siddharth Bhat, Alex Keizer, Chris Hughes, Andrés Goens and Tobias Grosser;
licensed under Creative Commons License CC-BY 4.0

The International Conference on Interactive Theorem Proving (ITP 2024).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sb2743@cam.ac.uk
https://orcid.org/0009-0007-6410-3681
mailto:ack55@cam.ac.uk
https://orcid.org/0000-0002-8826-9607
mailto:chughes6@ed.ac.uk
mailto:a.goens@uva.nl
https://orcid.org/0000-0002-0409-1363
mailto:tobias.grosser@cst.cam.ac.uk
https://orcid.org/0000-0003-3874-6003
https://doi.org/10.4230/LIPIcs.ITP.2024.23
https://zenodo.org/records/11519739
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Verifying Peephole Rewriting In SSA Compiler IRs

replace the matched pattern with an optimized, semantically-equivalent program fragment.44

Despite their simplicity, these local “peephole optimizations” [22] remain important in45

compiler development. A quick overview of the program transformation libraries of46

LLVM shows that more than 10% of its code1 is dedicated to LLVM’s peephole optimizer47

InstCombine, which is beyond the size of the LLVM loop optimizer. Despite the large size48

and scope of the LLVM project, Alive [20] is regularly referenced in LLVM commits. This49

is evidence that SMT-based, low-effort tooling for peephole rewrites can enable the use of50

verification in day-to-day compiler development.51

Peephole rewriting has been formalized in its simpler, classical form of straight-line52

assembly code [24]. To our knowledge, peephole rewriting along def-use chains [1] has not53

yet been formalized. As an example, consider the rewrite (y = x + 1; z = y − 1) 7→ (z = x).54

This pattern does not match the program (y = x + 1; p = y; z = y − 1) in straight-line55

rewriting, due to the interleaved instruction p = y. On the other hand, by concentrating56

on the dataflow, we rewrite any subprogram of the form (y = x + 1; # ; z = y − 1) to57

(y = x + 1; # ; z = x), regardless of what fills the hole #. This is known as rewriting on58

the “def-use” chain, where the pattern matching is extended to semantic subexpressions in59

the program. Observe that the fact that addition and subtraction are pure, and that SSA60

does not allow mutating the value of y is critical for the correctness of this optimization.61

Domain-specific peephole rewrites within the MLIR compiler framework [17] rely on purity62

and referential transparency to enable this class of optimizations.63

MLIR is a compiler framework for multi-level, domain-specific compiler IRs. It is64

widely used in the context of machine learning [34], quantum computing [28], and even as an65

alternative compiler for Lean [6], among other domains. MLIR lowers the cost of instantiating66

domain-specific IRs and encourages local transformations that exploit the value semantics67

(i.e., referential transparency) of specialized high-level IRs over global reasoning at a lower68

abstraction level. MLIR also introduces the concept of regions, which can model control flow69

and other structured IR operations as nested IRs that replace complex unstructured control.70

Existing formalizations of SSA do not cover domain-specific SSA-based IRs or regions.71

In this paper, we propose a framework that is aimed at prototyping and verifying peephole72

optimizations for domain-specific SSA-based IRs. We formalize a core calculus for SSA-based73

IRs and mechanize it in the Lean [8] proof assistant to enable verification of peephole rewriting74

over SSA IRs based on value semantics with regions. Our framework is deliberately built to75

be interoperable with MLIR. This aims to streamline the verification of peephole rewrites for76

MLIR. Concretely, we contribute:77

A formalization of SSA with regions parametrized over a user-defined IR X and its78

mechanization in our framework2 LeanMLIR(X) that exploits denotational-style value79

semantics for optimizing along the SSA use-def chain of an MLIR-style IR (Sections 2, 3)80

Evidence that our formalization of SSA allows for effective meta-theoretic reasoning:81

A verified peephole rewriter, for which we prove that lifting a peephole rewrite to a82

rewrite on the entire program preserves semantics (Section 4.1)83

Two verified implementations of generic SSA-based optimizations: dead code elimina-84

tion and common subexpression elimination (Section 4.2)85

Proof automation for eliminating the abstraction overhead of our SSA calculus and86

exposing clean mathematical proof obligations for each rewrite (Section 4.3)87

An extension of our pure optimizations in a context with side effects (Section 5)88

1 Non-blank and non-comment lines of .cpp files in llvm/lib/Transforms on commit f4f1cf6c3.
2 Our framework is open-source and available at https://github.com/opencompl/ssa.

https://github.com/opencompl/ssa

S. Bhat, A. Keizer, C. Hughes, A. Goens and T. Grosser 23:3

inductive Ty
| r
| nat

inductive Op
| arith_const (x : Nat) -- with compile-time data `x`
| monomial -- build equivalence class of monomial
| add -- add op.

(a) User definitions for QuotRing in our framework. Op has three constructors, add, monomial and (const
x), for x an element of N, matching the three operations of the IR. Ty has two constructors, r and nat.

instance : OpSignature Op Ty where signature
| .arith_const _ => { sig := [], outTy := .nat } -- takes no args, returns an `r`.
| .add => { sig := [.r, .r], outTy := .r } -- takes two `r`s, returns an `r`.
| .monomial => { sig := [.nat, .nat], outTy := .r } -- takes two`.nat`s

(b) User-defined signatures of each QuotRing operation.

noncomputable def generator : (ZMod q)[X] := X^(2^n) + 1
abbrev R := (ZMod q)[X] / (span {generator q n})

instance : TyDenote Ty where
toType
| .r => R -- the denotation of `r` is an element of the ring `R`
| .nat => Nat

instance : OpDenote Op Ty where
denote
| .arith_const (x : Nat), _, _ => x -- Denotation of `(arith_const x)` is `x`
| .add, [(x : R), (y : R)]h, _ => x + y
| .monomial, [(c : Nat), (i : Nat)]h, _ =>

Quotient.mk (span {generator q n}) (monomial i c)

(c) User-defined semantics of QuotRing. The instance syntax is used to define a typeclass instance, by
specifying the corresponding members, which in this case are the denotation functions. The noncomputable
annotation in Lean tells the compiler not to generate executable code for this function, since mathlib
uses a noncomputable definition for quotients of polynomial rings. Note that our framework ensures that
values are well-typed according to OpSignature and TyDenote.

Figure 1 User definitions for QuotRing, which declares the operations and types of the IR, the
type signatures of the operations, and the denotations of the types and operations into Lean types.

Syntax, semantics, and local rewrites for three MLIR-based IRs: (1) arithmetic over89

bitvectors, (2) structured control flow, and (3) fully homomorphic encryption (Section 6)90

2 Motivation: Verfying Optimizations for High-Level IRs91

Effective domain-specific optimizations are almost impossible when reasoning on traditional92

LLVM-style compiler IRs. These offer a “universal” low-level abstraction, originally designed93

to represent C-style imperative code. Such LLVM-style IRs are built around the concepts94

of load/store/arithmetic/branching, which is ideal when optimizing at the level of scalar95

arithmetic, instruction scheduling, and certain kinds of loop optimizations. However, this96

level of abstraction is unsuitable for reasoning about high-level mathematical abstractions.97

Consider a compiler for Fully Homomorphic Encryption (FHE) [9], a cryptographic98

technique that uses algebraic structures to allow an untrusted third party to do computation99

on encrypted data. In such a compiler, we might have a rewrite like (a + X2n + 1 7→ a),100

ITP 2024

23:4 Verifying Peephole Rewriting In SSA Compiler IRs

which is a simple identity on the corresponding quotient ring.3 Expressed in LLVM, the101

computation of this simple operation consists of multiple basic blocks forming a loop, each102

containing memory loads, pointer arithmetic, scalar operations, and branches. As a result,103

the algebraic structure is completely lost and exploiting simple algebraic identities turns into104

a heroic effort of reasoning about side effects and stateful program behavior. State-of-the-art105

compilers for FHE consequently use domain-specific IRs (often expressed with MLIR [35, 26])106

when generating optimized code for FHE, where algebraic optimizations can take place at an107

FHE-specific IR that has value-semantics (e.g., is referentially transparent) and is overall108

closer to the mathematical structure of the problem.109

2.1 Defining LeanMLIR(QuotRing): Syntax and Semantics110

As an example, we model an IR aimed at FHE that manipulates objects in the algebraic111

structure R ≡ (Z/qZ)[X]/(X2n + 1). To model it, we instantiate an IR LeanMLIR(QuotRing)112

in our framework. It has three simple operations: arith_const and monomial, to construct113

values in R, and add to add two values of R. To define the syntax and semantics of114

LeanMLIR(QuotRing), we first declare the types and operations in the IR (Figure 1a).115

QuotRing has two types: r, which represents the ring R, and nat for naturals. Terms in Op116

represent the operations arith_const, monomial and add, and associated compile-time data.117

We then define the operation signatures by giving an instance of the OpSignature typeclass,118

which is offered by our framework to instantiate custom IRs (Figure 1b). That is, for each119

operation we specify: (1) the arity and types of arguments (sig), and (2) the type of the120

return value (outTy). The operation arith_const takes no arguments and returns a nat,121

monomial and add take two nat/r-valued arguments respectively, and both return an r.122

The type denotation is also simple to express with the TyDenote typeclass (Figure 1c). Ty123

thus represents the embedded type in the IR and has only two inhabitants r and nat, whose124

denotation are R and Nat, the Lean (host) type that represents the mathematical objects R125

and N respectively. The denotation of operations is a Lean function from the denotation of126

the input types (as recorded in the signature of that operation), to the denotation of the127

output type. Concretely, a (arith_const n) operation takes no arguments, so its denotation128

is an nat, while add takes two r arguments, so its denotation is a function from the product4
129

of its arguments to its output, i.e., R × R → R. The same is true for monomial for Z×Z → R.130

We define the denotation of (arith_const n) to evaluate to n, add(x, y) to evaluate to (x131

+ y) and monomial(a, i) to Quotient.mk (span generator p q (monomial a i)), the132

equivalence class of aXi. We also require a few lines of specific code to translate the MLIR133

abstract syntax tree (AST) to Ty (e.g., mapping index into nat or R to r) and Op, not shown134

here (details in Section 3.2). Together, these definitions instantiate LeanMLIR(QuotRing).135

The QuotRing IR does not use regions. We will see examples of regions in (Section 6.2).136

2.2 Defining and Executing Peephole Rewrites for QuotRing137

We now verify the peephole rewrite (a + X2n + 1 7→ a), where a is a variable and X2n

138

is a constant in the ring. In (Z/qZ)[X]/(X2n + 1) this rewrite is simple to prove and,139

unsurprisingly, our custom LeanMLIR(QuotRing) IR enables us to rewrite at exactly this140

level. Any given peephole rewrite (of which Figure 2 is an example) consists of a context Γ of141

free variables in the search pattern of the peephole rewrite. The search pattern is called lhs,142

3 We will discuss the underlying mathematical structure in more detail in Section 6.3
4 The mechanization uses a heterogeneous vector type HVector, which is coerced into the product type.

S. Bhat, A. Keizer, C. Hughes, A. Goens and T. Grosser 23:5

def a_plus_generator_eq_a : PeepholeRewrite Op [.r] .r := {
lhs /- a + X^(2^n) + 1 -/ := [quotring_com q, n| {

^bb0(%a : !R):
%one_int = arith.const 1 : i16
%two_to_the_n = arith.const ${2**n} : index
%x2n = poly.monomial %one_int, %two_to_the_n : (i16, index) -> !R
%oner = poly.const 1 : !R
%p = poly.add %x2n, %oner : !R
%v1 = poly.add %a, %p : !R
return %v1 : !R

}],
rhs /- a -/ := [quotring_com q, n| {

^bb0(%a : !R):
return %a : !R

}],
correct := by

funext Γv; simp_peephole [Nat.cast_one, Int.cast_one] at Γv 1
/- ⊢ a + ((Quotient.mk (span {f q n})) ((monomial (2**n)) 1) + 1) = a -/
... /- simple proof with only definitions and theorems from Mathlib -/

}

Figure 2 A peephole rewrite in LeanMLIR(QuotRing) asserts the semantic equivalence of two
SSA programs given in MLIR syntax. Our proof automation through simp_peephole eliminates the
framework overhead, such that closing a clean mathematical goal suffices to prove correctness.

and the replacement is rhs. The user has a proof obligation that the denotations of the left143

and right-hand sides are equal, which is given by the field correct of the peephole rewrite.144

We declare our desired peephole rewrite (in Figure 2) by defining a_plus_generator_eq_a.145

Its type is (PeepholeRewrite Op [.r] r), where the Op specifies the IR the rewrite belongs146

to and [.r] is the list of types of free variables in the program. For (a+X2n +1 7→ a), this is147

(a : r). The final instruction we are matching yields a value of type r. The lhs is the program148

fragment we want to match on, with the free variable %a interpreted as being allowed to149

match any variable of type r. Observe that the type encapsulates exactly what is necessary150

for a well-typed match: the types of free variables (r) and the type of the instruction whose151

return value we are replacing (also r in this case). The rewritten program is the rhs field.152

Both the left- and right-hand sides of the rewrite are written in MLIR syntax. (We153

use MLIR’s concise IR-specific syntax for readability here; our parser currently implements154

the slightly-more-verbose generic MLIR syntax). Note that we also include a custom155

quasiquotation ${2**n}, to inline the symbolic (universally quantified) value n, even though156

the IR would require 2n to be a concrete constant. Using MLIR syntax matches the LLVM157

community’s use of automation tooling, such as Alive: copy a code snippet and get a response.158

Our goal is to make the use of an interactive theorem prover part of the day-to-day workflow159

of compiler engineers. To enable this workflow, we implement a full MLIR syntax parser,160

along with facilities to convert from the generic MLIR abstract syntax tree (AST) into our161

framework type, such that we can use MLIR syntax in Lean.162

To prove the correctness of a_plus_generator_eq_a, we use the simp_peephole 1163

tactic from our framework, which removes any overhead of our SSA encoding. We are164

left with: ⊢ a + ((Quotient.mk (span f q n)) ((monomial (2**n)) 1) + 1) = a , a165

proof obligation in the underlying algebraic structure that, thanks to Lean’s mathlib, can166

be closed with a few (elided) lines of algebraic reasoning.167

ITP 2024

23:6 Verifying Peephole Rewriting In SSA Compiler IRs

2.3 Executing Peephole Rewrites168

Given a peephole rewrite rw and a source program s, we provide rewritePeephole to replace169

the pattern rw.lhs in the source program s. If the matching succeeds, we insert the target170

program rw.rhs (with appropriate substitutions) and replace all references to the original171

let-binding with a reference to the newly inserted let. Note that the matching is based on172

the def-use chain. Thus, a pattern need not be syntactically sequential in the program s.173

As long as the pattern rw.lhs can be found as subprogram of s, the subprogram will be174

rewritten. This makes our peephole rewriter an SSA peephole rewriter, which distinguishes175

it from a straight-line peephole rewriter that only matches a linear sequence of instructions.176

Thanks to our intrinsically well-typed encoding, we know that the result of the rewriter177

is always a well-typed program, under the same context and resulting in the same type178

as the original program. Furthermore, the framework extends the local proof of semantic179

equivalence to a global proof, showing that the rewriter is semantics preserving:180

/- The denotation of the rewritten program is equal to the source program. -/
theorem denote_rewritePeephole (fuel : N) (pr : PeepholeRewrite Op Γ t)

(target : Com Op Γ2 t2) : (rewritePeephole fuel pr target).denote = target.denote

These typeclass definitions are all we need to define the QuotRing IR. Our framework181

takes care of building the intrinsically well-typed IR for QuotRing from this, and gives us a182

verified peephole rewriter, with other optimizations like CSE and DCE. We will now delve183

into the details of the framework and see how it achieves this.184

3 LeanMLIR(X): A Framework for Intrinsically Well-Typed SSA185

In this section, we describe the core design of the framework: the encoding of programs and186

their semantics in LeanMLIR(X) (Figure 3a). We review some dependently-typed tooling we187

use to define our IR. Contexts: Our encoding is intrinsically well-typed (i.e., each inhabitant188

of Expr or Com described below is, by construction, well typed). Thus, we need a context to189

track the types of variables that are allowed to occur (Ctxt Ty). A context is a list of types,190

where for example [int, int, bool] means that there are two variables of the (user-defined)191

type int and one variable of type bool we may refer to. Variables: The type (Var Γ α)192

encodes variables of type α in context Γ. We use De Bruijn indices [29] in the standard193

way, but, additionally, a variable with index i also carries a proof witness that the i-th entry194

of context Γ is the type α. Heterogeneous Vectors: To define an argument signature195

(OpSignature.sig), say, [int, int, bool], we need an expression with this operation to196

store two variables of type int and one of type bool. We want to statically ensure that the197

types of these variables are correct, so we store them in a heterogeneous vector. A vector of198

type HVector f [α1, ..., αn] is equivalent to a tuple (f α1 × ... × f αn).199

3.1 Semantics of LeanMLIR(X)200

The core types for programs are Expr and Com, shown in Figure 3a. The type (Expr Γ201

α) describes individual MLIR operations; we think of it as a function from values in the202

context Γ—also called a valuation for that context—to a value in the denotation of type α.203

Commands (Com Γ α) has a similar interpretation but represents sequences of operations.204

Each command binds a new value in the current context (the var constructor) until the205

sequence returns the value of one such variable v (the ret constructor). Thus, this encoding206

of SSA exploits the similarity to the ANF [2] and CPS [14] encodings. The semantics given207

S. Bhat, A. Keizer, C. Hughes, A. Goens and T. Grosser 23:7

inductive Expr [OpSignature Op Ty] : Ctxt Ty → Ty → Type where
| mk (op : Op) -- op (arg1, arg2, ..., argn) : outTy op

(args : HVector (Var Γ) (OpSignature.sig op)) : Expr Γ (OpSignature.outTy op)

inductive Com [OpSignature Op Ty] : Ctxt Ty → Ty → Type where
| ret (v : Var Γ α) : Com Γ α -- return v
| var (e : Expr Γ α) (body : Com (Γ.snoc α) β) : Com Γ β -- let v : α := e in body
(a) Core syntax of LeanMLIR(X), polymorphic over Op. The arguments in square brackets are assumed
typeclass instances. Type is the base universe of Lean types.
variable [TyDenote Ty] [OpDenote Op Ty] [DecidableEq Ty]

def Expr.denote : {ty : Ty} → (e : Expr Op Γ ty) → (Γv : Valuation Γ) → toType ty
| _, 〈op, args〉, Γv => OpDenote.denote op (args.map (fun _ v => Γv v))

def Com.denote : Com Op Γ ty → (Γv : Valuation Γ) → (toType ty)
| .ret e, Γv => Γv e
| .var e body, Γv => body.denote (Γv.snoc (e.denote Γv))
(b) Denotation of Expr and Com in LeanMLIR(X), which extends the user’s OpDenote to entire programs.
Intrinsic well-typing of Com makes its denotation a well-typed function from the context valuation to the
return type. The angled brackets are used to pattern match on a structure constructor anonymously.

Figure 3 Definitions in LeanMLIR(X) for Expr and Com, and their associated denotations.

by the user in OpDenote are extended to semantics for Expr and Com (Figure 3b) by the208

framework. An Expr evaluates its arguments by looking up their value in the valuation and209

then invokes the user-defined OpDenote.denote to evaluate the semantics of the op.210

3.2 Writing LeanMLIR(X) Programs Using MLIR Syntax211

An important goal for our framework is to provide easy access to formalization for the MLIR212

community. Toward this goal, we have a deep embedding of MLIR’s AST and a corresponding213

parser. This is developed using Lean’s syntax extensions [33]. We augment this with a214

generic framework to build Expr and Com terms from a raw MLIR AST. This framework215

allows the user to pattern-match on the MLIR AST to build intrinsically well-typed terms,216

as well as to throw errors on syntactically correct, but malformed MLIR input. These are217

used by our framework to automatically convert MLIR syntax into our SSA encoding, along218

with the ability to provide precise error messages in cases of translation failure. This enables219

us to write all our examples in MLIR syntax, as demonstrated throughout the paper.220

More concretely, we have an embedded domain-specific language (EDSL), which declares221

the MLIR grammar as a Lean syntax extension. As part of this work, we have found several222

inconsistencies with the MLIR language reference and contributed patches upstream to223

update them.5 Overall, this gives users the ability to write idiomatic MLIR code into our224

framework and receive an MLIR AST. Moreover, as we will showcase in the examples, our225

EDSL is idomatically embedded into Lean, which allows us to quasiquote Lean terms. This226

will come in handy to write programs that are generic over constants, such as parameterizing227

a program by 2n for any choice of n. We build our intrinsically well-typed data structures228

from this MLIR AST by writing custom elaborators.229

5 reviews.llvm.org/{D122979, D122978, D122977, D119950, D117668}

ITP 2024

23:8 Verifying Peephole Rewriting In SSA Compiler IRs

structure OpSignature (Ty : Type) where /- (1) Extending signature. -/
regSig : List (Ctxt Ty × Ty)

· · ·

class OpDenote [TyDenote Ty] [OpSignature Op Ty] where /- (2) Extending denotation. -/
denote : (op : Op) → (args : HVector toType (OpSignature.sig op)) →
(regArgs : HVector (fun (ctx, t) => Valuation ctx → toType t) (OpSignature.regSig op)) →

(toType (OpSignature.outTy op))

inductive Expr : (Γ : Ctxt Ty) → (ty : Ty) → Type where
| mk (op : Op)
· · ·
(regArgs : HVector (fun (ctx, ty) => Com ctx ty) (OpSignature.regSig op)) :

Expr Γ ty

mutual /- (3) extending expression denotation to recursively invoke regions. -/
def Expr.denote : {ty : Ty} → (e : Expr Op Γ ty) → (Γv : Γ.Valuation) → (toType ty)
| _, 〈op, args, regArgs〉, Γv =>
OpDenote.denote op (args.map (fun ty v => Γv v)) regArgs.denote
· · ·
end

Figure 4 Extending LeanMLIR(X) with regions. New fields are in green . In OpDenote, one
can now access the sub-computation represented by the region when defining the semantics of Op.

3.3 Modelling Control Flow in LeanMLIR(X) With Regions230

So far, our definition of Com only allows straight-line programs. To be able to model control231

flow, we add regions to our IR. Regions add the syntactic ability to nest IR definitions,232

thereby allowing syntactic encoding of concepts such as structured control flow. This is in233

contrast with the approach of having a sea of basic blocks in a control-flow graph (CFG) that234

are connected by branch instructions. More specifically, structured control flow with regions235

allows modeling reducible control flow [1]. General CFGs allow us to represent more complex,236

irreducible control flow, which makes them harder to reason about. Consequently, compiler237

frameworks such as MLIR have moved toward directly representing structured control flow,238

and we follow their approach. Notably, region arguments replace phi nodes in MLIR.239

Intuitively, regions allow an Op to receive Coms as arguments, and choose to execute these240

Com arguments zero, one, or multiple times. This allows us to model if conditions (by executing241

the regions zero or once), loops (by executing the region n times), and complex operations242

such as tensor contractions and convolutions by executing the region on the elements of243

the tensor [34]. We implement this by extending Expr with a new field representing region244

arguments (Figure 4). We also extend OpSignature with an extra argument for the input245

types and output types of the region. In parallel, we add the denotation of regions as an246

argument, extending OpDenote. Similarly, we extend the denotation of Expr to compute the247

denotation of the region Coms in the Expr, before handing off to OpDenote.248

This extension to our core calculus gives us the ability to model structured nesting of249

programs. This is used pervasively in MLIR, to represent if conditions, for loops, and higher-250

level looping patterns such as multidimensional strided array accesses over multidimensional251

arrays (tensors). We show how to model control flow in Section 6.2.252

4 Reasoning About LeanMLIR(X)253

The correctness of peephole rewriting is a key aspect of the metatheory of LeanMLIR(X). We254

begin by sketching the mechanized proof of correctness of peephole rewriting. We then discuss255

how the infrastructure built for this proof is reused to prove two other SSA optimizations:256

S. Bhat, A. Keizer, C. Hughes, A. Goens and T. Grosser 23:9

common subpression elimination (CSE) and dead code elimination (DCE). Finally, we discuss257

our proof automation, which manipulates the IR encoding at elaboration time to eliminate258

all references to the framework and provide a clean goal to the proof engineer.259

4.1 Verified SSA Rewriting With rewritePeephole260

We now provide a sketch of the mechanized correctness proof of rewritePeephole. The261

key idea is that to apply a rewrite at location i, we open up the Com at location i in262

terms of a zipper [11]. This zipping and rewriting at a location i is implemented by263

rewritePeepholeAt. The zipper comprises of Lets to the left-hand side of i, and Com to264

the right: let x2 = x1; (let x3 = x2; (let x4 = x3; (return x3))): Com [x1] α =265

((let x2 = x1); let x3 = x2); : Lets [x1] [x1, x2, x3]266

(let x4 = x3; (return x3)) : Com [x1, x2, x3] α267

The use of a zipper enables us to easily traverse the sequence of let-bindings during268

transformation and exposes the current let binding being analyzed. This exposing is269

performed by Lets, which unzips a Com such that the outermost binding of a Lets is the270

innermost binding of a Com. This forms the zipper, which splices the Com into a Com and271

a Lets. Also, while Com tracks only the return type α in the type index, Lets tracks the272

entire resulting context ∆. That is, in (lets : Lets Γ ∆), the first context, Γ, lists all273

free variables (just as in Com Γ t), but the second context, ∆, consists of all variables in Γ274

plus a new variable for each let-binding in the sequence lets. We can thus think of ∆ as275

the context at the current position of the zipper. Another difference is the order in which276

these sequences grow. Recall that in Com, the outermost constructor represents the topmost277

let-binding. In Lets, the outermost constructor instead corresponds to the bottommost278

let-binding. This difference is what makes the zipper work.279

We have two functions to go from a program to a zipper and back: (1) (splitProgramAt280

pos prog), to create a zipper from a program prog by moving the specified number of281

bindings to a new Lets sequence, and (2) (addComInMiddleOfLetCom top mid bot), to282

turn a zipper top, bot into the program, while inserting a program mid : Com in between.283

We also prove that the result of splitting a program with splitProgramAt is semantically284

equivalent to the original program. Similarly, we prove that stitching a zipper back together285

with addComInMiddleOfLetCom results in a semantically equivalent program.286

Given a peephole rewrite (matchCom, rewriteCom), to rewrite at location i, we first split287

the target program into top and bot. We then attempt to match the def-use chain of the288

return variable in matchCom with the final variable in top (which is the target i, since we289

split the program there). This matching of variables recursively matches the entire expression290

tree.6 Upon successful matching, this returns a substitution σ for the free variables in291

matchCom in terms of (free or bound) variables of top. Using this successful matching, we292

stitch the program together as top; σ(rewriteCom); τ(bot). Here, τ is another substitution293

that replaces the variable at location i with the return variable of rewriteCom. Since we294

derived a successful matching, we know that the semantics of variable i is equal to that295

of the return variable of matchCom. By assumption on the peephole rewrite, the variable296

i is equivalent to the return variable of rewriteCom. This makes it safe to replace all297

occurrences of the variable i in bot with the return variable of rewriteCom. This proves298

denote_rewritePeephole, which states that if a rewrite succeeds, then the semantics of299

6 We match regions in expressions for structural equality. We do not recurse into regions during matching,
and treat regions as black-boxes.

ITP 2024

23:10 Verifying Peephole Rewriting In SSA Compiler IRs

the program remain unchanged. In this way, we use a zipper as a key inductive reasoning300

principle to mechanize the proof of correctness of SSA-based peephole rewriting.301

4.2 DCE & CSE: Folding Over Intrinsically Well Typed SSA302

The classic optimizations enabled by SSA are peephole rewriting, dead code elimination303

(DCE), and common subexpression elimination (CSE). We implement these optimizations304

in our framework as a test of its suitability for metatheoretic reasoning. Our approach305

is different from previous approaches [41, 5] with our use of intrinsic well-typing, which306

mandates proofs of the structural rules on contexts to rewrite programs. We begin by307

building machinery to witness that a context ∆ is equal to the context Γ, minus the variable308

x. This is spelled as Deleted Γ x ∆ in LeanMLIR(X). We then prove context-strengthening309

theorems to delete variables that do not occur in Expr and Com while preserving denotation.310

Using this tooling, DCE is implemented in ≈ 400 LoC, which shows that our framework311

is well-suited to metatheoretic reasoning. The implementation is written in a proof-carrying312

style, interleaving function definitions with their proof of correctness. The recursive step of313

the dead code elimination takes a program p : Com Γ t and a variable v to be deleted, and314

returns a new p′ : Com ∆ t. The two contexts Γ and ∆ are linked by a context morphism315

(Hom Γ ∆), to interpret p′ (with the deleted variable) which lives in a strengthened context316

∆ in the old context Γ. We walk p recursively to eliminate dead values at each let binding.317

This produces a new p′ with dead bindings removed, a proof of semantic preservation, and318

a context morphism from the context of p to the strengthened context of p′ with all dead319

variables removed.320

Similarly, the CSE implementation folds over Com recursively, maintaining data structures321

necessary to map variables and expressions to their canonical form. At each (let x =322

f(v1, ...vn) in b) step, we canonicalize the variables vi to find variables ci. We then look up323

the canonicalized expression f(c1, . . . , cn) in our data structure to find the canonical variable324

cx if it exists and replace x with cx. If such a canonical cx does not exist, we add a new325

entry mapping f(c1, . . . , cn) to x, thereby canonicalizing any further uses of this expression.326

4.3 Proof Automation for Goal State Simplification in LeanMLIR(X)327

The proof automation tactic simp_peephole Γ (used to eliminate framework definitions328

from the goal state) takes a context Γ, reduces its type completely, and abstracts out program329

variables to provide a theorem statement that is universally quantified over the variables of330

the program, with all framework definitions eliminated. It uses a set of equation theorems331

to normalize the type of Γ. This is necessary to extract the types of variables during332

metaprogramming. Once the type of Γ is known, we simplify away all framework definitions333

(such as Expr.denote). We then replace all occurrences of a variable accesses Γ[i] with a334

new (Lean, i.e., host) variable. We do this by abstracting terms of the form Γ[i] where i is335

the i-th variable. This gives us a proof state that is universally quantified over variables from336

the context. Finally, we clear the context away to eliminate all references to the context337

Γ. The set of definitions we simplify away is extensible, enabling us to add domain-specific338

simplification rewrites for the IR.339

5 Pure Rewriting in a Side-Effectful World340

While LeanMLIR(X) streamlines the verification of higher-level IRs that use only value341

semantics, typical IRs may interleave islands of pure operations (with value semantics) with342

S. Bhat, A. Keizer, C. Hughes, A. Goens and T. Grosser 23:11

operations that carry side effects. An IR that is user-facing can usually be rephrased with343

high-level, side-effect-free semantics. Yet, each operation in such an IR is compiled through a344

sequence of IRs that are lower level and potentially side-effectful. For example, in the case of345

FHE, the pure FHE IR is compiled to a lower-level IR that encodes the coset representative346

of each ideal as an array, with control flow represented via structured control flow (scf).347

Eventually, this is compiled into LLVM which is rife with mutation and global state. In348

such a compilation flow, peephole rewrites are used at each intermediate IR to optimize pure349

fragments while leaving side-effectful fragments untouched. An effective compiler pipeline350

introduces the right abstractions to maximize rewrites on side effect-free fragments.351

LeanMLIR(X) is designed to facilitate verification of peephole rewrites as they arise in such352

a compiler pipeline. The previous sections already presented how our framework supports353

the verification of peephole rewrites in a pure setting. Yet, our design also allows for the354

optimization of a pure fragment in a side-effectful context. We have a mechanized proof of355

the correctness of the extended framework with support for side effects and a rewrite theorem356

that performs pure rewrites in the presence of side effects. The key idea is to annotate each357

Op with an EffectKind, where EffectKind.pure changes the denotation of the Expr into358

the Id monad, while EffectKind.impure denotes into an arbitrary, user-chosen, IR-specific359

monad. We also introduce a new notion of monadic evaluation of Lets, which returns a360

valuation plus a proof that, for every variable v that represents a pure expression e in the361

sequence of let-bindings, the valuation applied to v agrees with the (pure) denotation of362

e. This proof-carrying definition allows us to use this invariant when reasoning inside a363

subexpression of a monadic bind.364

With the above at hand, the overall rewriter construction and proof strategy remains365

unchanged, with the additional constraint of performing rewriting only on those operations366

marked as EffectKind.pure, and the surrounding monadic ceremony required to show that367

a pure rewrite indeed does not change the state of pure variables in various lemmas.7368

6 Case Studies369

We mechanize three IRs based on ones found in the MLIR ecosystem as case studies for370

LeanMLIR(X) and show how they benefit from the different aspects of our framework. Note371

that the core of our framework (definitions of Expr, Com, PeepholeRewrite, lemmas about372

these objects, and the peephole rewriting theorem) is ≈ 2.2k LoC. The case studies based373

on our framework together are ≈ 5.6k LoC, which stresses the framework to ensure that it374

scales to realistic formal verification examples.375

6.1 Reasoning About Bitvectors of Arbitrary Width376

We first demonstrate our ability to reason about a well-established domain of peephole377

rewrites: LLVM’s arithmetic operations over fixed-bitwidth integers. Using the Z3 SMT378

solver [7], the Alive project [21, 20] can efficiently and automatically reason about these.379

Notably, at the time of this writing, almost 700 LLVM patches have justified their correctness380

by referencing Alive. In this way, accessible proof tools can find a place in production compiler381

development workflows. However, Alive is limited by the capabilities of the underlying SMT382

solvers. SMT solvers are complex, heuristic-driven, and sometimes even have soundness383

7 A limitation of our current mechanization is that we assume that all regions are potentially side-effecting.
This is a simplification that shall be addressed in a newer version of the proof.

ITP 2024

23:12 Verifying Peephole Rewriting In SSA Compiler IRs

bugs [38]. They are also specialized to support very concrete theories. Among others, this384

means Alive can only reason about a given fixed bitwidth. Even recent work that specifically385

aims to generalize rewrites to arbitrary bitwidths, can only exhaustively test a concrete set386

of bitwidths [23]. Using our framework, we can reproduce Alive-style correctness proofs, and387

extend them to reason about arbitrary (universally quantified) bitwidths. This ability to388

handle arbitrary bitwidth is important in verification contexts that have wide bitvectors, as389

they can occur in real-life VLSI problems [12, 36]. MLIR itself has multiple IRs that require390

bitvector reasoning: comb for combinational logic in circuits, arith and index for integer391

and pointer manipulation, and llvm which embeds LLVM IR in MLIR. Our streamlined392

verification experience offers developers an Alive-style workflow for the llvm dialect, while393

allowing reasoning across bitwidths. As our framework is extensible, we believe we can also394

support other MLIR dialects that require bitvector reasoning, such as comb and arith.395

6.1.1 Modeling a fragment of LLVM IR: Syntax and Semantics396

To test our ability to reason about bitvectors in practice, we model the semantics of the397

arithmetic fragment of LLVM as the IR LeanMLIR(LLVM). We support the (scalar) operators:398

not, and, or, xor, shl, lshr, ashr, urem, srem, add, mul, sub, sdiv, udiv, select and399

icmp. We support all icmp comparison flags, but not the strictness flags nsw and nuw.400

At the foundation of our denotational semantics is Lean’s BitVec type, which models401

bitvectors of arbitrary width and offers smtlib [4] compatible semantics. However, when we402

started this work, most bitvector operations were not defined in the Lean ecosystem and the403

bitvector type itself was not fully fleshed out. Hence, we worked with the mathlib and Lean404

community to build and upstream a theory of bitvectors.8 After developing the core theory405

in mathlib, Lean’s mathematical library, development subsequently moved into Lean core,406

where we continue to evolve Lean’s bitvector support.407

The semantics of LLVM’s arithmetic operations follow the semantics of smtlib (and408

consequently Lean’s) bitvectors closely. In case of integer wrapping or large shifts, for409

example, LLVM can produce so-called poison values [21], which capture undefined behavior410

as a special value adjoined to the bitvector domain. LLVM’s poison is designed not to be411

a side effect and, consequently, can be reasoned about in a pure setting. In contrast, ub412

is a side effect that triggers immediate undefined behaviour, and can be refined into any413

behavior. In LLVM, the following refinements are legal: ub ⊑ poison ⊑ val. Among the414

instructions we model, division and remainder can produce immediate undefined behavior ub.415

In our framework, we approximate these by collapsing the side-effectful undefined behavior416

and side-effect-free poison both into Option.none. We thus denote bitvectors into the type417

Option (BitVec w). This is safe for the three kinds of rewrites we consider: (1) the left-418

and right-hand sides are both UB and poison free (arithmetic rewrites), (2) the left- and419

right-hand sides are both UB free (bitwise rewrites, where left and right shifts may produce420

poison), (3) the left-hand side may trigger UB, while the right hand side may only produce421

poison (e.g., refining division into arithemtic operations). We leave separating UB as a side422

effect distinct from poison, and reasoning about peephole rewrites which refine such side423

effects as interesting future work.424

For side-effect-free programs, our semantics match the LLVM semantics. We perform425

8 github.com/leanprover-community/mathlib4/pull/{5383,5390,5400,5421,5558,5687,5838,5896,7410,
7451,8231,8241,8301,8306,8328,8345,8353},
github.com/leanprover/lean4/pull/{3487,3471,3461,3457,3445,3492,3480,3450,3436},
github.com/leanprover/std4/pull/{357,359,599,626,633-636,637,639,641,645-648,655,658-660,653}

S. Bhat, A. Keizer, C. Hughes, A. Goens and T. Grosser 23:13

exhaustive enumeration tests between our semantics and that of LLVM. We take advantage426

of the fact that an IR with computable semantics automatically defines an interpreter in our427

framework. We build an executable program that runs every instruction, with all possible428

input combinations upto bitwidth 8. We get LLVM’s ground truth by using LLVM’s optimizer,429

opt to transform the same instruction with constant inputs. This optimizes the program430

into a constant output, handling undefined behavior. By exhaustive enumeration, our tested431

executable semantics correspond to the LLVM semantics wherever the result is Option.some,432

and also soundly model undefined behavior whenever the result is Option.none. This gives433

us confidence our semantics correspond to LLVM’s.434

6.1.2 Proving Bitvector Rewrites in our Framework435

Effective automation for bitvector reasoning is necessary to resolve the proof obligations436

that LeanMLIR(X) derives automatically from peephole rewrites expressed as MLIR program437

snippets. While Lean does not yet have extensive automation for bitvectors, thanks to our438

work we can already use a decision procedure for commutative rings [10] and an extensionality439

lemma that establishes the equality of bitvectors given equality on an arbitrary bit index.440

We test the available automation on a dataset of peephole optimizations from Alive’s441

test suite, consisting of theorems about addition, multiplication, division, bit-shifting and442

conditionals. Out of the 435 tests in Alive’s test suite, we translate 93 tests which are the443

ones that are supported by the LLVM fragment we model and without preconditions. We444

prove 54 of these rewrites from the Alive test suite automatically. Some rewrites cannot445

be handled automatically. Of those where automation struggles, we manually prove an446

additional 6, selecting the ones where an SMT solver takes long to prove them even for a447

specific bitwidth (e.g., 64). Our proofs are over arbitrary (universally quantified) bitwidth,448

save for some theorems that are only true at particular bitwidths.9 As an example, let us449

consider the rewrite:450

example (w : Nat) :
[llvm (w)| {

^bb0(%X : _, %C1 : _, %C2 : _):
%v1 = llvm.xor %X, %C1
%v2 = llvm.and %v1, %C2
llvm.return %v2

}] ⊑ [llvm (w)| {
^bb0(%X : _, %C1 : _, %C2 : _):

%v1 = llvm.and %X, %C2
%v2 = llvm.xor %X, %C1
%v3 = llvm.and %C1, %C2

%v4 = llvm.xor %v1, %v3
llvm.return %v4

}] := by simp_alive_peephole; alive_auto

Note that due to the support of MLIR syntax in our framework, this rewrite is specified451

in MLIR syntax. We use a custom extension with the placeholder syntax _, to stand for an452

arbitrary bitwidth w. After simplification of the framework code with simp_peephole, this453

yields the proof obligation:454

(w : Nat) (X C1 C2 : BitVec w) ⊢ (X ^^^C1) &&& C2 = X &&& C2 ^^^C1 &&& C2455

This proof obligation only concerns the semantics in the semantic domain of bitvectors,456

it does not feature MLIR and SSA anymore. This goal is automatically proven by our proof457

9 e.g., a + b = a xor b is true only at bitwidth 1.

ITP 2024

23:14 Verifying Peephole Rewriting In SSA Compiler IRs

/-- only control flow operations, parametric over another IR Op' -/
inductive Op (Op': Type) [OpDenote Op' Ty'] : Type
| coe (o : Op') -- coerce Op' to Op
| for (ty : Ty') -- a for loop whose loop carried data is Ty'

instance [I : HasTy Op' Int] : OpSignature (Op Op') Ty' where
signature
| .coe o => signature o
| .for t => 〈[/-start-/I.ty, /-step-/I.ty, /-niters-/N.ty, /-v-/t],

/- region arguments: -/ [([/-i-/I.ty, /-v-/t], /-v'-/t)],
/-return-/t〉

instance [I : HasTy Op' Int] [OpDenote Op' Ty']: OpDenote (Op Op') Ty' where
denote
| .coe o', args', regArgs' => OpDenote.denote o' args'regArgs' -- reuse denotation of o'
| .for ty, [istart, istep, niter, vstart]h, [f]h =>

let istart : Z := I.denote_eq ▶ istart -- coerce to `int`.
... -- coerce other arguments
let loop_fn := ... -- build up the function that's iterated.
(loop_fn (istart, vstart)).2

Figure 5 Simplified implementation of LeanMLIR(scf(X)) Observe that the IR is parametrized
over another IR Op’, and that we add control flow to the other IR in a modular fashion.

automation for bitvectors, alive_auto. In the longer term, we aim to also connect our work458

to a verified SAT checker that is under development.10
459

6.2 Structured Control Flow460

The examples of IRs we have seen so far are all straight-line code. In this use case, we show461

how we can add control flow to existing IRs, thanks to the parametricity of our framework.462

We also demonstrate how encoding control flow structures as regions enable succinct proofs463

for transformations, by exploiting the high-level structure of these operations. To this end,464

we model structured control flow as a fragment of the scf IR in MLIR, by giving semantics465

to two common kinds of control flow: if conditions and bounded for loops. Note that we466

choose to model bounded for loops, since these are the loops that are used in MLIR to model467

high-level operations such as tensor contractions. A pleasant upshot is that these guaranteed468

to terminate, and can thus have a denotation as a Lean function without requiring modelling469

of nontermination (which is side-effectful). Our sketch of the extended framework with side470

effects will be used to pursue this line of research in the future. The conditionals and bounded471

for loop allow us to concisely express loop canonicalizations and transformations from MLIR472

in LeanMLIR(scf). These operations allow us to concisely express loop canonicalizations and473

transformations in LeanMLIR(scf).474

We built this parametrically over an existing IR X to allow these constructs to be added475

to an existing IR X. The key idea is that the Op corresponding to scf is parametrized by the476

Op corresponding to another IR X. Since the only datatypes scf requires are booleans and477

natural numbers, we ask that the type domain of X contains these types. We then provide478

denotations in for booleans and integers from the type domain of X. Thus, what we encode479

is LeanMLIR(scf(X)), which is an IR for structured control flow parametrized by another,480

user-defined IR X.481

The scf.for operation (Figure 5) has three arguments: the number of times the loop is482

to be executed, a starting and step value for the iteration, and a seed value for the loop to483

10 https://github.com/leanprover/leansat

S. Bhat, A. Keizer, C. Hughes, A. Goens and T. Grosser 23:15

iterate on. Note that in the definition, the IR Op is defined parametrically over another IR484

Op’, and the types of Op are the same as the types of other IR Ty’. We perform a similar485

construction for if conditions.486

The denotation of the for loop, as well as theorems about loop transformations, follow487

from mathlib’s theory for iterating functions (Nat.iterate). The loop body in scf.for488

has a region that receives the current value of the loop counter and the current iterated value489

and returns the next iterated value. We prove the inductive invariant for loops using the490

standard theory of iterated function compositions (f0 = id, fk ◦ f l = fk+l, idk = id). We491

also prove common rewrites over loops: running a for loop for zero iterations is the same as492

not running a loop at all (dead loop deletion), two adjacent loops with the same body can493

be fused into one when the ending index of the first loop is the first index of the second loop494

(loop fusion), and a loop whose loop body does not depend on the iteration count can be495

reversed (loop reversal). Similarly, we prove that if true e e′ = e, and if false e e′ = e′.496

These do not count as peephole rewrites in our framework, as they are universally497

quantified over the loop body (which is a region). This is unsupported — peephole rewrites498

in LeanMLIR(X) may only have free variables, not free region arguments. Increasing the499

power of peephole rewrites with arbitrary regions is an interesting question for future work.500

Consider the loop optimization that converts iterated addition into a single multiplication.501

Its proof obligation is (⊢ λx. x + δ)n(c) = n · δ + c (a short proof by induction on n). This502

transformation is challenging to perform in a low-level IR, since there is no syntactic concept503

of a loop. However, this transformation is a valid peephole rewrite in our framework since it504

uses a statically known loop body. We showcase how regions permit MLIR (and, consequently,505

us) to easily encode and reason with commonplace loop transformations. Importantly, the506

parametricity of our framework allows us to prove a set of these as local peephole rewrites507

that are valid on all IR extensions scf(X).508

6.3 Fully Homomorphic Encryption509

A key motivation for LeanMLIR(X) is to enable specifying formal semantics for high-level,510

mathematical IRs. These IRs require access to complex mathematical objects that are511

available in proof assistants, and verifying rewrites on such IRs is out of practical reach for512

today’s SMT solvers. As a case study, we formalize the complete “Poly” IR.11 This IR is a513

work in progress and is in flux, as it is part of the discussion of an upcoming open standard514

for homomorphic encryption, developed in collaboration by Intel and Google.12 Contrary515

to what its naming implies, this IR does not model operations on polynomials.13 Instead,516

codewords are encoded as elements in a finitely-presented commutative ring, specifically,517

the ring R ≡ (Z/qZ)[x]/(x2n + 1), where q, n ∈ N are positive integers (q composite). The518

name “Poly” comes from the equivalence class representatives are polynomials, but not all519

IR operations are invariants of the equivalence class.520

The “Poly” IR is, in fact, a superset of the QuotRing IR we defined in Section 2. It consists521

of the operations add, sub, mul, mul_constant, leading_term, monomial, monomial_mul,522

from_tensor, to_tensor, arith.constant and constant.14
523

Most of these operations are self-explanatory and derive from the (commutative) ring524

structure of R or are used to build elements in R, like the equivalence classes of constants525

11 as of commit 2db7701de
12 https://homomorphicencryption.org/
13 In the same way that rationals Q are not pairs of integers Z × Z.
14 It also has distinct types for integers and naturals, which we unified in Section 2 for simplicity.

ITP 2024

https://github.com/google/heir/tree/2db7701de976f0277f7d3b8be9c65315c647cf79/include/Dialect/Poly
https://homomorphicencryption.org/

23:16 Verifying Peephole Rewriting In SSA Compiler IRs

or monomials. Three operations, to_tensor and from_tensor and leading_term do not526

follow directly from the algebraic properties of the polynomial ring. Instead, they depend527

on a (non-canonical) choice of representatives for each ideal coset in the polynomial ring.528

More precisely, let π : (Z/qZ)[x] ↠ (Z/qZ)[x]/(x2n + 1) be the canonical surjection into the529

quotient, taking a polynomial to its equivalence class modulo division by x2n + 1. Further let530

σ : (Z/qZ)[x]/(x2n +1) ↪→ Z/qZ[x] be the injection taking an equivalence class to its (unique)531

representative with degree ≤ 2n. This is a right-inverse of π, i.e. π ◦ σ = id. Note that532

multiple right-inverses that could have been chosen for σ, as long as σ(x) is a representative533

of the equivalence class of x for all x ∈ (Z/qZ)[x]/(x2n + 1), σ will be a right-inverse of534

π. The operation to_tensor(p) returns the vector (σ(p)[i])i=0,...,2n , where a[i] represents535

the i-th coefficient, i.e. σ(p) =
∑2n

i=0(σ(p)[i])xi, and to_tensor the converse. Similarly,536

leading_term(p) returns the equivalence class of the leading term of the representative σ(p)537

(which also depends on the choice of σ).538

This allows us to define the semantics and prototype both the IR and rewrites in it.539

Rewrites like mul(p,q) → mul(q,p) follow immediately from the fact that R is a commutative540

ring. Other rewrites like from_tensor(to_tensor(p)) → p, or even add(p,monomial(1,2n))541

→ sub(p,1), on the other hand, are more specific to this IR and have a higher manual-proof542

overhead. We prove all of these.543

We discussed the IR and potential semantics with the authors of the HEIR IR in the544

context of the upcoming open standard for homomorphic encryption. We believe that a545

framework like the one presented in this paper will allow standards like these to be defined546

with formal semantics from the ground up.547

7 Related Work548

Alive [21, 18] and Alive 2 [20] provide push-button verification for a subset of LLVM by549

leveraging SMT solvers. Alive-tv does the same for a set of concrete IRs for tensor operations550

in MLIR [3]. The semantics and correctness of compiling compositionally have been explored551

by multiple authors, like Pilsener [25] or many variants of CompCert [19]: like compositional552

CompCert [32], CompCertX [37], SepCompCert [13], CompCertM [31], and CompCertO [15].553

A great summary of the approaches to this problem (including the ones mentioned above),554

with their differences and similarities, is given by Patterson et al [27]. All of these use fixed555

languages but are reasonable ways of giving semantics to relevant IRs in LeanMLIR(X). Our556

semantics is denotational and can be executed, like interaction trees [39, 40].557

Our work differs from prior work on formalizing peephole rewrites by providing a framework558

for reasoning about SSA peephole rewrites. The closest similar work, Peek [24] defines559

peephole rewriting over an assembly instruction set. Their rewriter expects instructions to560

be adjacent to one another. Furthermore, their rewriter restricts source and target patterns561

to be of the same length, filling in the different lengths with nop instructions. Their patterns562

permit side effects, which we disallow since we are interested in higher-level, pure rewrites.563

Our patterns provide more flexibility since the source and target patterns are arbitrary564

programs, and are matched on sub-DAGs instead of a linear sequence.565

8 Conclusion566

Peephole rewrites represent a large and important class of compiler optimizations. We have567

seen how domain-specific IRs in SSA with regions greatly extend the scope of these peephole568

rewrites. They raise the level of abstraction both syntactically with def-use chains and569

S. Bhat, A. Keizer, C. Hughes, A. Goens and T. Grosser 23:17

nesting, and semantically, with domain-specific abstractions. We have shown how to reason570

effectively about such SSA-based compilers, and, specifically, local reasoning in the form571

of peephole rewrites. We advocate building on top of a proof assistant with a small TCB,572

an expressive language and a large library of mathematics. This increases the confidence573

in our verification and extends its applicability to many domains where more specialized574

methods don’t exist. We also advocate proof automation and an intrinsically well-typed575

mechanized core that can be designed to focus on the semantics of the domain. We incarnate576

these principles in LeanMLIR(X), a framework built on Lean and mathlib to reason about577

domain-specific IRs in SSA with regions. We show how LeanMLIR(X) is simple to use,578

amenable to automation, and effective for verifying IRs over complex domains.579

References580

1 AV Aho, R Sethi, and JD Ullman. Compilers: Principles, techniques, and tools. 1985.581

2 Andrew W Appel. SSA is functional programming. Acm Sigplan Notices, 33(4):17–20, 1998.582

3 Seongwon Bang, Seunghyeon Nam, Inwhan Chun, Ho Young Jhoo, and Juneyoung Lee. SMT-583

based translation validation for machine learning compiler. In Sharon Shoham and Yakir584

Vizel, editors, Computer Aided Verification - 34th International Conference, CAV 2022, Haifa,585

Israel, August 7-10, 2022, Proceedings, Part II, volume 13372 of Lecture Notes in Computer586

Science, pages 386–407. Springer, 2022. doi:10.1007/978-3-031-13188-2_19.587

4 Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard: Version 2.0. In588

Proceedings of the 8th international workshop on satisfiability modulo theories (Edinburgh,589

UK), volume 13, page 14, 2010.590

5 Gilles Barthe, Delphine Demange, and David Pichardie. Formal verification of an SSA-based591

middle-end for CompCert. ACM Transactions on Programming Languages and Systems592

(TOPLAS), 36(1):1–35, 2014.593

6 Siddharth Bhat and Tobias Grosser. Lambda the ultimate ssa: optimizing functional programs594

in ssa. In 2022 IEEE/ACM International Symposium on Code Generation and Optimization595

(CGO), pages 1–11. IEEE, 2022.596

7 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms597

for the Construction and Analysis of Systems: 14th International Conference, TACAS 2008,598

Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS599

2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings 14, pages 337–340. Springer,600

2008.601

8 Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming602

language. In International Conference on Automated Deduction, pages 625–635. Springer,603

2021.604

9 Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.605

10 Benjamin Grégoire and Assia Mahboubi. Proving equalities in a commutative ring done606

right in Coq. In Joe Hurd and Thomas F. Melham, editors, Theorem Proving in Higher607

Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005,608

Proceedings, volume 3603 of Lecture Notes in Computer Science, pages 98–113. Springer, 2005.609

doi:10.1007/11541868_7.610

11 Gérard Huet. The zipper. Journal of functional programming, 7(5):549–554, 1997.611

12 Petter Källström and Oscar Gustafsson. Fast and area efficient adder for wide data in recent612

Xilinx FPGAs. In 2016 26th International Conference on Field Programmable Logic and613

Applications (FPL), pages 1–4. IEEE, 2016.614

13 Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis.615

Lightweight verification of separate compilation. In Proceedings of the 43rd Annual ACM616

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 178–190,617

2016.618

ITP 2024

https://doi.org/10.1007/978-3-031-13188-2_19
https://doi.org/10.1007/11541868_7

23:18 Verifying Peephole Rewriting In SSA Compiler IRs

14 Richard A Kelsey. A correspondence between continuation passing style and static single619

assignment form. ACM SIGPLAN Notices, 30(3):13–22, 1995.620

15 Jérémie Koenig and Zhong Shao. CompCertO: compiling certified open C components. In621

Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language622

Design and Implementation, pages 1095–1109, 2021.623

16 Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis624

& transformation. In International Symposium on Code Generation and Optimization, 2004.625

CGO 2004., pages 75–86. IEEE, 2004.626

17 Chris Lattner, Jacques Pienaar, Mehdi Amini, Uday Bondhugula, River Riddle, Albert Cohen,627

Tatiana Shpeisman, Andy Davis, Nicolas Vasilache, and Oleksandr Zinenko. MLIR: A compiler628

infrastructure for the end of Moore’s law. arXiv preprint arXiv:2002.11054, 2020.629

18 Juneyoung Lee, Chung-Kil Hur, and Nuno P Lopes. AliveInLean: a verified LLVM peephole630

optimization verifier. In International Conference on Computer Aided Verification, pages631

445–455. Springer, 2019.632

19 Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and633

Christian Ferdinand. CompCert-a formally verified optimizing compiler. In ERTS 2016:634

Embedded Real Time Software and Systems, 8th European Congress, 2016.635

20 Nuno P Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. Alive2:636

bounded translation validation for LLVM. In Proceedings of the 42nd ACM SIGPLAN637

International Conference on Programming Language Design and Implementation, pages 65–79,638

2021.639

21 Nuno P Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Provably correct640

peephole optimizations with alive. In Proceedings of the 36th ACM SIGPLAN Conference on641

Programming Language Design and Implementation, pages 22–32, 2015.642

22 William M McKeeman. Peephole optimization. Communications of the ACM, 8(7):443–444,643

1965.644

23 Manasij Mukherjee and John Regehr. Hydra: Generalizing peephole optimizations with645

program synthesis. Proceedings of the ACM on Programming Languages, (OOPSLA), 2024.646

24 Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. Verified peephole optimiza-647

tions for CompCert. In Proceedings of the 37th ACM SIGPLAN Conference on Programming648

Language Design and Implementation, pages 448–461, 2016.649

25 Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer, and Viktor650

Vafeiadis. Pilsner: A compositionally verified compiler for a higher-order imperative lan-651

guage. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional652

Programming, pages 166–178, 2015.653

26 Sunjae Park, Woosung Song, Seunghyeon Nam, Hyeongyu Kim, Junbum Shin, and Juneyoung654

Lee. HEaaN.MLIR: An optimizing compiler for fast ring-based homomorphic encryption.655

Proceedings of the 44th ACM SIGPLAN Conference on Programming Language Design and656

Implementation, 2023.657

27 Daniel Patterson and Amal Ahmed. The next 700 compiler correctness theorems (functional658

pearl). Proceedings of the ACM on Programming Languages, 3(ICFP):1–29, 2019.659

28 Anurudh Peduri, Siddharth Bhat, and Tobias Grosser. QSSA: an SSA-based IR for quantum660

computing. In Proceedings of the 31st ACM SIGPLAN International Conference on Compiler661

Construction, pages 2–14, 2022.662

29 Benjamin C Pierce and C Benjamin. Types and programming languages. MIT press, 2002.663

30 Fabrice Rastello and Florent Bouchez Tichadou. SSA-based Compiler Design. Springer Nature,664

2022.665

31 Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil666

Hur. CompCertM: CompCert with C-assembly linking and lightweight modular verification.667

Proceedings of the ACM on Programming Languages, 4(POPL):1–31, 2019.668

S. Bhat, A. Keizer, C. Hughes, A. Goens and T. Grosser 23:19

32 Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W Appel. Compositional669

CompCert. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on670

Principles of Programming Languages, pages 275–287, 2015.671

33 Sebastian Ullrich and Leonardo de Moura. Beyond notations: Hygienic macro expansion for672

theorem proving languages. In International Joint Conference on Automated Reasoning, pages673

167–182. Springer, 2020.674

34 Nicolas Vasilache, Oleksandr Zinenko, Aart J. C. Bik, Mahesh Ravishankar, Thomas Raoux,675

Alexander Belyaev, Matthias Springer, Tobias Gysi, Diego Caballero, Stephan Herhut, Stella676

Laurenzo, and Albert Cohen. Composable and modular code generation in MLIR: A structured677

and retargetable approach to tensor compiler construction. CoRR, abs/2202.03293, 2022.678

URL: https://arxiv.org/abs/2202.03293, arXiv:2202.03293.679

35 Alexander Viand, Patrick Jattke, Miro Haller, and Anwar Hithnawi. HECO: Automatic code680

optimizations for efficient fully homomorphic encryption. arXiv preprint arXiv:2202.01649,681

2022.682

36 Wei Wang and Xinming Huang. A novel fast modular multiplier architecture for 8,192-bit683

RSA cryposystem. In 2013 IEEE High Performance Extreme Computing Conference (HPEC),684

pages 1–5. IEEE, 2013.685

37 Yuting Wang, Pierre Wilke, and Zhong Shao. An abstract stack based approach to veri-686

fied compositional compilation to machine code. Proceedings of the ACM on Programming687

Languages, 3(POPL):1–30, 2019.688

38 Dominik Winterer, Chengyu Zhang, and Zhendong Su. Validating SMT solvers via semantic689

fusion. In Alastair F. Donaldson and Emina Torlak, editors, Proceedings of the 41st ACM690

SIGPLAN International Conference on Programming Language Design and Implementation,691

PLDI 2020, London, UK, June 15-20, 2020, pages 718–730. ACM, 2020. doi:10.1145/692

3385412.3385985.693

39 Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C Pierce,694

and Steve Zdancewic. Interaction trees: representing recursive and impure programs in Coq.695

arXiv preprint arXiv:1906.00046, 2019.696

40 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic.697

Modular, compositional, and executable formal semantics for LLVM IR. Proc. ACM Program.698

Lang., 2021. URL: https://doi.org/10.1145/3473572.699

41 Jianzhou Zhao, Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. Formal700

verification of SSA-based optimizations for LLVM. In Proceedings of the 34th ACM SIGPLAN701

conference on Programming language design and implementation, pages 175–186, 2013.702

ITP 2024

https://arxiv.org/abs/2202.03293
https://arxiv.org/abs/2202.03293
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/3473572

	1 Introduction
	2 Motivation: Verfying Optimizations for High-Level IRs
	2.1 Defining LeanMLIR(QuotRing): Syntax and Semantics
	2.2 Defining and Executing Peephole Rewrites for QuotRing
	2.3 Executing Peephole Rewrites

	3 LeanMLIR(X): A Framework for Intrinsically Well-Typed SSA
	3.1 Semantics of LeanMLIR(X)
	3.2 Writing LeanMLIR(X) Programs Using MLIR Syntax
	3.3 Modelling Control Flow in LeanMLIR(X) With Regions

	4 Reasoning About LeanMLIR(X)
	4.1 Verified SSA Rewriting With rewritePeephole
	4.2 DCE & CSE: Folding Over Intrinsically Well Typed SSA
	4.3 Proof Automation for Goal State Simplification in LeanMLIR(X)

	5 Pure Rewriting in a Side-Effectful World
	6 Case Studies
	6.1 Reasoning About Bitvectors of Arbitrary Width
	6.1.1 Modeling a fragment of LLVM IR: Syntax and Semantics
	6.1.2 Proving Bitvector Rewrites in our Framework

	6.2 Structured Control Flow
	6.3 Fully Homomorphic Encryption

	7 Related Work
	8 Conclusion

